
Localized Delimited Release:
Combining the What and Where Dimensions of Information Release

Aslan Askarov Andrei Sabelfeld
Department of Computer Science and Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden

Abstract
Information release (or declassification) policies are the key chal-
lenge for language-based information security. Although much
progress has been made, different approaches to information re-
lease tend to address different aspects of information release. In
a recent classification, these aspects are referred to as what, who,
where, and when dimensions of declassification. In order to avoid
information laundering, it is important to combine defense along
the different dimensions. As a step in this direction, this paper
presents a combination of what and where information release poli-
cies. Moreover, we show that a minor modification of a security
type system from the literature (which was designed for treating
the what dimension) in fact enforces the combination of what and
where policies.

Categories and Subject Descriptors K.6.5 [Management of Com-
puting and Information Systems]: Security and Protection

General Terms Security, Languages

Keywords Information flow, noninterference, downgrading, de-
classification, security policies.

1. Introduction
Information release (or declassification) policies are the key chal-
lenge for language-based information security [SM03, Zda04,
SS05]. These policies ensure that legitimate information release
is distinguished from information laundering (unintended leaks
hidden by the system’s release points). For example, a password
checker should be able to legitimately leak whether the user’s query
matches the password. However, releasing the password itself re-
gardless of the query would be an instance of laundering.

Much recent progress has been made in the area of information
release policies. In a recent classification [SS05], these aspects are
referred to as what, who, where, and when dimensions of declassi-
fication. However, different approaches to declassification tend to
address different aspects of information release. We primarily focus
on the what and where dimensions. Consider the following exam-
ple:

l := declassify(h); c; l := h

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLAS’07 June 14, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-711-7/07/0006. . . $5.00

where c is a command that does not update h. We assume that
h is a secret (high) variable and l is a public (low) one. The
declassification expression declassify(h) means that the value
of the high variable h should be declassified to low. Once the value
of h is released at the beginning of the program, it can be freely
used in subsequent assignments to l. Therefore, the above example
is intuitively secure. Now consider a variation of the example (with
the same restriction on c):

l := h; c; l := declassify(h)

This variation leaks the secret before it is legitimately declassi-
fied (which can be exploited if the value of l is output to the at-
tacker before declassification). Nevertheless, this variation is ac-
cepted by security definitions (e.g., [Coh78, JL00, SS01, SM04,
GM04, GM05]) that are based on the what dimension of informa-
tion release. For these definitions, it is important that the value of
h is leaked, but they ignore where in the program the leak occurs.
Clearly, ignoring the where aspect is dangerous, when premature
release is undesirable: for example, in an information-purchase sce-
nario. To put it extremely: for batch-job programs, a policy based
on the what dimension in isolation does not qualify for a declas-
sification policy because it already assumes that secrets have been
partially released at the program’s start (and so the program does
not actually declassify anything while running).

Consider another example, a simple password-checking frag-
ment:

match := declassify(pwd == qry)

We assume that the variable pwd is high and match is low (qry
might be either high or low). The program checks whether the
user query qry matches the password pwd and declassifies the
boolean outcome of the match. Now consider a variation of the
above example:

match := declassify(pwd)

By changing the argument to declassification, we are able to laun-
der the entire password into the value of the match . Neverthe-
less, this variation is accepted by security definitions (e.g., [CM04,
MS04, BS06, AS07]) that address the where dimension of infor-
mation release. These definitions emphasize that leaks happen in
a declassification-marked part of the code. However, these defini-
tions are unable to distinguish leaks that reveal something about the
password from leaks that reveal everything about the password. (A
possibility to remedy this problem by connecting data to syntactic
functions through which it can be released has been explored in the
setting of relaxed noninterference [LZ05], although at a price of
semantic consistency [SS05].)

The above examples indicate that in order to avoid information
laundering, it is important to combine defense along the different
dimensions.

As a step in this direction, this paper presents a combination
of what and where information release policies. We capture the lo-
cation of release by instrumenting the semantics with the set of
released expressions and extending the definition of delimited re-
lease [SM04] with this information. The resulting security defi-
nition, localized delimited release, appears to satisfy the semantic
consistency, conservativity, and non-occlusion principles of declas-
sification [SS05]. Moreover, we show that a minor modification of
a security type system from the literature [SM04], which was de-
signed for enforcing the pure what delimited release policy in fact
enforces the combination of what and where policies.

2. Language
To be concrete, we illustrate our approach on a simple impera-
tive language whose expressions and commands are built accord-
ing to Figure 1. The language contains a declassification expression
declassify(e), which declassifies the value of e to low. For sim-
plicity, but without loss of generality, we consider two levels of
security: high and low.

The semantics of expressions are presented in Figure 2. Expres-
sion configurations have the form 〈e, m, E〉, where e is an expres-
sion, m is a memory (a mapping of variables to values), and E is
a set of released expressions (escape hatches). Expression evalu-
ation rules have the form 〈e, m, E〉 ↓ 〈n, E′〉 and perform total
arithmetic computations while accumulating the set of released ex-
pressions. We define m(e) = n whenever 〈e, m, E〉 ↓ 〈n, E′〉.

Command configurations have the form 〈c, m, E〉 where c is
a command, m is a memory, and E is a set of released expres-
sions. The command semantics are given in Figure 3. Transitions
between command configurations have the form 〈c, m, E〉 −→
〈c′, m′, E′〉, which corresponds to a step of computation. A spe-
cial case is a step to a designated command stop (which is not
a part of the source language), 〈c, m, E〉 −→ 〈stop, m′, E′〉,
which corresponds to a step that results in termination. The tran-
sition rules propagate the set of released expressions. As is stan-
dard, the relation −→∗ denotes the reflexive and transitive clo-
sure of the relation −→. We use notation 〈c, m, E〉 ⇓ 〈m′, E′〉
to indicate the termination of 〈c, m, E〉 in 〈m′, E′〉, i.e., whenever
〈c, m, E〉 −→∗ 〈stop, m′, E′〉. When the final configuration is
unimportant, we simply write 〈c, m, E〉 ⇓.

3. Security
The security definition builds on indistinguishability relations for
memories and configurations that represent the attacker’s view:
related memories (or configurations) are indistinguishable by the
attacker.

To begin with a simple indistinguishability relation, memories
m1 and m2 are low-equal if they agree on low variables, i.e.,
m1(x) = m2(x) for all low variables x.

A slightly more complex indistinguishability relation on mem-
ories is parameterized over the set of released expressions:

DEFINITION 1. The indistinguishability relation on memories I
induced by a set of expressions E is defined by m1 I(E) m2

whenever m1(e) = m2(e) for all e ∈ E.

The intuition is that if a set of expressions E has been released,
then the attacker may be able to distinguish more memories. For
example, if the set is empty, then the relation m1 I(∅) m2 holds
for all m1 and m2. If the high variable pwd has been released,
then only memories that agree on pwd are indistinguishable, i.e.,
m1 I({pwd}) m2 implies m1(pwd) = m2(pwd). If the expres-
sion pwd == qry has been released, then m1 I({pwd == qry})
m2 implies that related memories must agree on the released ex-
pression, i.e., either m1(pwd) = m1(qry) and m2(pwd) =

e ::= n | x | e op e | declassify(e)
c ::= skip | x := e | c; c

| if e then c else c | while e do c

Figure 1. Expression and command syntax

〈n, m, E〉 ↓ 〈n, E〉 〈x, m, E〉 ↓ 〈m(x), E〉

〈ei, m, E〉 ↓ 〈ni, Ei〉
〈e1 op e2, m, E〉 ↓ 〈op(n1, n2), E1 ∪ E2〉

〈e, m, E〉 ↓ 〈n, E′〉
〈declassify(e), m, E〉 ↓ 〈n, E′ ∪ {e}〉

Figure 2. Expression semantics

〈skip, m, E〉 −→ 〈stop, m, E〉

〈e, m, E〉 ↓ 〈n, E′〉
〈x := e, m, E〉 −→ 〈stop, m[x 7→ n], E′〉

〈c1, m, E〉 −→ 〈stop, m′, E′〉
〈c1; c2, m, E〉 −→ 〈c2, m

′, E′〉

〈c1, m, E〉 −→ 〈c′1, m′, E′〉
〈c1; c2, m, E〉 −→ 〈c′1; c2, m

′, E′〉

〈e, m, E〉 ↓ 〈n, E′〉 n 6= 0

〈if e then c1 else c2, m, E〉 −→ 〈c1, m, E′〉

〈e, m, E〉 ↓ 〈0, E′〉
〈if e then c1 else c2, m, E〉 −→ 〈c2, m, E′〉

〈e, m, E〉 ↓ 〈n, E′〉 n 6= 0

〈while e do c, m, E〉 −→ 〈c; while e do c, m, E′〉

〈e, m, E〉 ↓ 〈0, E′〉
〈while e do c, m, E〉 −→ 〈stop, m, E′〉

Figure 3. Command semantics

m2(qry) or m1(pwd) 6= m1(qry) and m2(pwd) 6= m2(qry).
The larger the set of the released expressions, the more memories
the attacker may distinguish and thus the smaller is the indistin-
guishability relation. The extreme case is the identity relation: if
the set of released expressions E contains all program variables,
then m1 I(E) m2 if and only if m1 = m2. This means that the
attacker has gathered full knowledge about all variables.

The following indistinguishability relation is on configurations.
While the relation concerns full traces, its restrictions about infor-
mation release are with respect to the initial memories, and hence
the relation is parameterized over the initial memories:

DEFINITION 2 (Low bisimulation). Given memories i1 and i2 a
symmetric1 relation Ri1,i2 on configurations is an i1, i2-low bisim-
ulation if, for all c1, c2, m1, m2, E1, and E2,

1 The up-front requirement on the symmetry of the relation justifies the
liberty of being asymmetric under requirement 2(ii).

• 〈c1, m1, E1〉 ⇓, 〈c2, m2, E2〉 ⇓, and
• 〈c1, m1, E1〉 Ri1,i2 〈c2, m2, E2〉

implies

1. i1 I(E1) i2 if and only if i1 I(E2) i2, and
2. if i1 I(E1) i2 then

(i) m1 =L m2 and
(ii) if 〈c1, m1, E1〉 −→ 〈c′1, m′

1, E
′
1〉 then 〈c2, m2, E2〉 −→∗

〈c′2, m′
2, E

′
2〉 and 〈c′1, m′

1, E
′
1〉 Ri1,i2 〈c′2, m′

2, E
′
2〉 for

some c′2, m′
2, and E′

2.

Two configurations cfg1 and cfg2 are i1, i2-low-bisimilar (written
cfg1 ∼i1,i2 cfg2) if there exists an i1, i2-low bisimulation that
relates them.

Note that an i1, i2-low bisimulation relates configurations whose
released expression sets are compatible: i.e., the induced indistin-
guishability relations either both relate the initial memories i1 and
i2 or both have them unrelated. If i1 and i2 are related, then the
current memories m1 and m2 of these configurations must be low-
equal. In addition, a step by one of the configurations is required
to be simulated by zero or more steps of the other configuration so
that the resulting configurations are related by the low-bisimulation
relation.

The above definition is termination-insensitive (e.g., [SM03])
in the sense that diverging runs are ignored, an assumption that is
commonly made. We are ready to present the localized delimited
release security definition.

DEFINITION 3 (Localized delimited release). A command c is se-
cure if for all m1 and m2 such that m1 =L m2 we have
〈c, m1, ∅〉 ∼m1,m2 〈c, m2, ∅〉.
For a command to be secure, it is required that configurations that
contain the command and start from some low-equal memories
m1 and m2 with empty released expression sets are m1, m2-low-
bisimilar.

Suppose that l is a low and h, h1, h2, . . . are high variables.
Consider the program:

l := h

Clearly, the set of released expressions is empty at all times. Recall
that the relation I(∅) relates all memories. Hence, the low-equality
of memories is imposed after executing the above command. Con-
sider some memories m1 and m2 so that m1(l) = m2(l) = 0,
m1(h) = 1 and m2(h) = 2. The configuration 〈l := h, m1, ∅〉
terminates in one step in the memory m1 where m′

1(l) = 1. The
configuration 〈l := h, m2, ∅〉 terminates in one step in the mem-
ory m′

2, where m′
2(l) = 2. For simulating the former step under

an m1, m2-low-bisimulation, it is required that either m′
1 =L m2

or m′
1 =L m′

2, which is impossible. Hence, there is no m1, m2-
low-bisimulation that relates 〈l := h, m1, ∅〉 and 〈l := h, m2, ∅〉;
therefore, the program l := h is insecure.

Consider the program:

l := declassify(h)

To see that this program legitimately declassifies h, take the relation
{(〈l := declassify(h), m1, ∅〉, 〈l := declassify(h), m2, ∅〉),
(〈stop, m′

1, {h}〉, 〈stop, m′
2, {h}〉)}, which is parameterized over

m1 and m2 and where 〈h, m1, ∅〉 ↓ 〈n1, {h}〉, 〈h, m2, ∅〉 ↓
〈n2, {h}〉, m′

1 = m1[l 7→ n1], and m′
2 = m2[l 7→ n2]. If m1 =L

m2, then the above relation is an m1, m2-low-bisimulation. To see
that a step by the configuration 〈l := declassify(h), m1, ∅〉 is
simulated by the configuration 〈l := declassify(h), m2, ∅〉, it is
sufficient to observe that m1 I({h}) m2 only holds if m1(h) =
m2(h), in which case the required relation m′

1 =L m′
2 is vacuous.

This shows how the release of h affects the requirement of the

low-equality of the memories from the two related runs: after h
is released, traces that disagree on the value of h at the point of
release are automatically accepted by the definitions. On the other
hand, traces that agree on the value of h are still required to be
related, in order to avoid leaks through other variables.

Consider another example:

h1 := h2; l := declassify(h1)

This program is insecure because it releases the value of h2, which
is masked as a release of the value of h1. This is captured by the
definition because starting from two initial memories m1 and m2

that agree on h1 but disagree on h2, the execution leads to final
states that disagree on l. Because we have m1 I({h1}) m2, it is
required that the final states must agree on l; hence, the program is
rejected.

A similar effect is exhibited by the following program:

if h then l := declassify(h1) else skip

Although the value of h1 is declared as an escape hatch, whether h1

has been declassified or not leaks some information about h. This
insecurity is captured by the definition (consider initial states that
agree on h1 but disagree on h).

Consider a simple average salary example:

l := declassify((h1 + · · ·+ hn)/n)

The intention is to release the average salary out of the salaries
stored in the variables h1 . . . hn, but no more information about
the salaries. This program is secure because the differences in the
value of the low outcome will only occur if there are differences in
what is intended to be released (the average). On the other hand,
the program:

h2 := h1; . . . ; hn := h1; l := declassify((h1 + · · ·+ hn)/n)

which leaks the value of h1 is rejected. The reason is that there
is no m1, m2-low-bisimulation for the memories m1 and m2

that agree on all variables except for h1 and h2 but agree on
the average. For example, m1(h1) = m2(h2) = 0, m1(h2) =
m2(h1) = 1 and m1(x) = m2(x) on all other variables x. Al-
though m1 I({(h1 + · · ·+ hn)/n}) m2, clearly the resulting
low outcomes m′

1 and m′
2 are not low-equal (m′

1(l) = 0 and
m′

2(l) = 1).
Yet another example is worth discussing:

h′ := h; h := 0; l := declassify(h); h := h′; l := h

At the time of declassification, nothing is released. The actual
release takes place at the end of the program. It is sometimes
important that secrets are leaked only at the time of declassification.
For example, this philosophy is adopted by our policy of gradual
release [AS07], which rejects the program above. However, the
rationale of localized delimited release, for a given piece of data,
is to disallow data release before it is declassified but, on the other
hand, allow release to take place any time after declassification.
This justifies the acceptance of the above program by Definition 3.

4. Relation to delimited release
As mentioned before, our starting point for the definition is the
delimited release policy [SM04]. Here, we recall this policy and
explain how our definition improves it.

For the purpose of delimited release, consider the semantics that
do not track the set of released expressions. Under these semantics,
we have the following definition:

DEFINITION 4 (Delimited release). Let the command c contain
exactly n declassified expressions e1 . . . en. Command c satis-
fies delimited release if whenever m1 =L m2, 〈c, m1〉 ⇓ m′

1,

〈c, m2〉 ⇓ m′
2, and for all i we have m1(ei) = m2(ei), then

m′
1 =L m′

2.

A program satisfies the delimited release property if whenever es-
cape hatch expressions cannot distinguish between two low-equal
initial memories, then the whole program cannot distinguish be-
tween these memories.

While our definition is compatible with delimited release on the
examples from the previous section, the benefit of tracking the set
of released expression is illustrated on the following examples. The
first one is from the introduction:

l := h; c; l := declassify(h)

where c is a command that does not update h. This example is
accepted by delimited release because h is considered released even
before the declassification statement is reached. However, localized
delimited release rejects this program because when the set of
released expressions is empty, then the memories are required to
maintain low-equality as they pass through assignments. Clearly,
this is not the case for the first assignment l := h. Another, in some
sense more dangerous, example is:

h2 := 0;

if h1 then l := declassify(h1) else l := declassify(h2)

This example is accepted by delimited release because both h1 and
h2 are considered released from the outset. Note, however, that if
the computation takes the else branch, then it never encounters
a declassification of h1. Nevertheless, the information about h1 is
leaked in the else branch.

The program above is rightfully rejected by our definition. In-
deed, when starting with two memories m1 and m2 that agree on
all variables (including h2) except m1(h1) 6= 0 and m2(h1) = 0,
then the indistinguishability relations I({h1}) and I({h2}) in-
duced by the released expression sets of the two branches of the
conditional clearly differ on m1 and m2: m1 ¬I({h1}) m2 but
m1 I({h2}) m2.

The final example is an instance of occlusion (occlusion is
discussed in more detail in the next section):

l := 0; (if l then l := declassify(h) else skip); l := h

No program run passes through a declassification statement be-
cause it occurs in dead code. On the other hand, the insecure assign-
ment l := h is always reachable. Nevertheless, delimited release
accepts this program as secure because h is declared as an escape
hatch. As for the previous example, the new definition rightfully
rejects the program because h never becomes a part of the set of
released expressions.

These examples illustrate that localized delimited release
strengthens the demands of delimited release by location sensi-
tivity. The following theorem states that localized delimited release
is a conservative extension of delimited release.

THEOREM 1. If command c is secure, then c satisfies the delimited
release security condition.

Proof. By induction on the length of execution traces. The details
are given in the appendix. 2

This confirms the intuition that addressing both the what and
where dimensions subsumes pure what definitions such as delim-
ited release.

5. Relation to declassification principles
A classification of declassification [SS05] identifies four principles
for declassification policies to serve as sanity checks for new defi-
nitions. Below we discuss the relation to all four principles.

The first principle is semantic consistency, which states that the
(in)security of a given program should be preserved by semantics-
preserving transformations of declassification-free code. This prin-
ciple is satisfied by our definition because its restrictions are only in
terms of declassification events: a modification of a declassification-
free fragment of a program in a semantics preserving way (where
semantic equivalence is defined as low bisimilarity that treats all
variables as low) will not reflect on the (in)security of the program.

The second principle is conservativity, which states that the
definition of security should be a conservative extension of non-
interference: for programs without declassification, the security
definition should be equivalent to noninterference. Noninterfer-
ence [GM82] is a baseline policy that requires complete indepen-
dence of low outputs from high inputs. This is the case for our
security definition. In the absence of declassification expressions,
the indistinguishability relation I(∅) relates all memories, which
means that the low-equality of states is always a requirement on
configurations that are related by low-bisimulation. Note, however,
that our definition boils down to a fine-grained flavor of noninter-
ference: starting with two low-equivalent states, any two terminat-
ing traces should have the same sequence of low memory updates.
For example, this definition rejects the program l := h; l := 0,
which would be accepted by a more permissive definition that only
considers initial and final states. Our definition, however, has an
advantage of being easily scalable to reasoning about intermedi-
ate inputs and outputs (the intermediate leak in the above program
should not be output to the attacker).

The third principle is monotonicity of release, which states that
adding declassification annotations to the code should not turn a
secure program into an insecure one. A declassification annotation
may only result in weakening the demands in the security condi-
tion. This principle is not supported by our definition. Consider the
program:

h′ := 0; if h then l := h′
else l := 0

The program satisfies localized delimited release. However, adding
a declassification annotation, as in:

h′ := 0; if h then l := declassify(h′) else l := 0

renders the program insecure. For two initial memories m1 and
m2, where m1(h) = m2(h) = 1, m1(h

′) = m2(h
′) = 0 and

m1(x) = m2(x) on all other variables x, requirement 1 of Def-
inition 2 is broken by any candidate for an m1, m2-low bisim-
ulation. Indeed, for the final configurations: m1 I(∅) m2 but
m1 ¬I({h′}) m2. The principle fails because the definition treats
declassifications with respect to initial states, ignoring the possibil-
ity that a declassification may become harmless in the current state
(as declassifying 0 in the example above).

The fourth principle is non-occlusion, which states that the pres-
ence of declassifications should not mask other unrelated informa-
tion leaks. As many other definitions along the what dimension of
release, the security condition records exactly what differences in
the memories that are allowed to leak to the attacker. Therefore,
there is no possible occlusion as to what can be leaked to the at-
tacker. As discussed in the previous section, this shows improve-
ment over delimited release, which suffers from occlusion [SS07].

6. Type-based enforcement
Interestingly, a type system [SM04] that is designed for tracking
delimited release is readily suitable for tracking the new definition.
A minor modification of the type system turns out to be sound
because it already keeps track of where data is released.

We display the typing rules in Figure 4. The only difference
from the original type system is that we disallow declassification in
a high context. This is needed in order to support requirement 1 of

Γ, pc ` n : `, ∅
Γ(x) = `

Γ, pc ` x : `, ∅

Γ, pc ` e : `,D1 Γ, pc ` e′ : `,D2

Γ, pc ` e op e′ : `,D1 ∪D2

Γ, pc ` e : `,D

Γ, low ` declassify(e) : low ,Vars(e)

Γ, pc ` e : `,D ` v `′ pc′ v pc

Γ, pc′ ` e : `′,D

Γ, pc ` skip : ∅, ∅
Γ, pc ` e : `,D ` t pc v Γ(x)

Γ, pc ` x := e : {x} ,D

Γ, pc ` c1 : U1,D1 Γ, pc ` c2 : U2,D2 U1 ∩D2 = ∅
Γ, pc ` c1; c2 : U1 ∪U2,D1 ∪D2

Γ, pc ` e : `,D
Γ, ` t pc ` c1 : U1,D1 Γ, ` t pc ` c2 : U2,D2

Γ, pc ` if e then c1 else c2 : U1 ∪U2,D ∪D1 ∪D2

Γ, pc ` e : `,D
Γ, ` t pc ` c : U1,D1 U1 ∩ (D ∪D1) = ∅

Γ, pc ` while e do c : U1,D ∪D1

Γ, pc ` c : U ,D pc′ v pc

Γ, pc′ ` c : U ,D

Figure 4. Typing rules

Definition 2. As earlier, we assume a simple two-element security
lattice where low v high , low v low , high v high , and
high 6v low . Besides checking for explicit and implicit flows in
a standard way [VSI96], the type system propagates two kinds of
effects: sets U and D. The set U keeps track of variables that have
been possibly updated by a command. The set D keeps track of
the set of variables that have been possibly used in declassified
expressions. The key constraint that the type system enforces is
that variables that are involved in any declassified expression have
never been updated prior to declassification. This guarantees that
no new information has been introduced into these variables since
the beginning of the execution. Keeping escape hatch expressions
intact prior to their declassification ensures the soundness of the the
type system with respect to delimited release [SM04].

As mentioned earlier, the type system is readily suitable for en-
forcing the new security definition. The fact that variables of de-
classified expressions are not updated before their declassification
is a strong property: it guarantees that parts of memories critical
to declassification are the same as in the initial memories. On the
other hand, the low-bisimulation definition demands low-equality
of the memories after declassification only if the memories before
declassification are indistinguishable by escape hatches. Clearly,
this demand is ensured by the type system because going through
a declassification statement means adding the escape hatch expres-
sion in the set of released expressions in the semantics; indeed,
the indistinguishability through this escape hatch through the initial
and current memories is equivalent: the relation i1 I(E ∪ {e}) i2
holds if and only if m1 I(E ∪ {e}) m2 holds for memories m1

and m2 immediately before declassifying expression e. Clearly, if

Figure 5. Localized delimited release in comparison

we have m1 I(E ∪ {e}) m2 before declassifying e, then we ob-
tain m′

1 =L m′
2 for the respective memories m′

1 and m′
2 after the

declassification step.
This leads us to the following soundness result:

THEOREM 2. If command c is typable, then c satisfies localized
delimited release.

Proof. By induction on the type derivation. The details are given
in the appendix. 2

It is straightforward to see that the type system accepts the first two
examples from Section 3 and, by soundness, rejects all insecure
examples from Sections 3 and 4.

Figure 5 provides a pictorial representation of Theorems 1
and 2: programs with localized delimited release satisfy the ba-
sic delimited release policy (Theorem 1); and typable programs
satisfy the localized delimited release policy (Theorem 2).

7. Related work
This paper combines two dimensions of information release: what
and where, and so we concentrate on these two dimensions when
discussing related work. For a comprehensive discussion of related
work on declassification we refer to the classification of declassi-
fication [SS05, SS07]. Related work within the area of language-
based information-flow security is discussed in a survey of the
area [SM03].

A natural starting point along the what dimension is the de-
limited release policy [SM04]. Delimited release has its roots in
independence [Coh78] policies, which have been generalized by
approaches based on abstract variables [JL00], partial equiva-
lence relations [ABHR99, SS01, Pro01], and abstract noninterfer-
ence [GM04, GM05]. Delimited release is a natural starting point
because it has an appealingly simple mechanism for extracting es-
cape hatch expressions from the code, and because it comes with
a type-based enforcement mechanism that turns out to handle the
where dimension of information release.

As mentioned before, local policies for relaxed noninterfer-
ence [LZ05] are related to combining the what and where of declas-
sification. Under relaxed noninterference, subprograms are labeled
with syntactic representations of functions that describe how an in-
teger can be leaked. The syntactic nature of the definition, however,
leads to the loss of semantic consistency: renaming functions might
lead to changes in the security of the program.

Interestingly, there is no equally natural starting point along the
where or when dimension (some when policies are capable of ex-
pressing code locality for release policies). A popular approach to
policies along the where dimension is based on intransitive nonin-

terference [Rus92, Pin95, RS99, RG99, Mul00, Man01, BPR04].
Informally, intransitive noninterference requires noninterference
between declassification events. In contrast to the presented condi-
tion, there are no guarantees for traces with declassifications in their
entirety. Although there has been work (e.g., [CM04, MS04, BS06,
AS07]) on mapping intransitive noninterference to a language-
based setting, it does not fully address the what dimension and
thus is vulnerable to attacks such as the password laundering attack
from the introduction.

Most recently, and independently, Mantel and Reinhard [MR07]
suggested three definitions (WHAT 1, WHAT 2, and WHERE)
for controlling the what and where dimensions of declassifica-
tion. However, they pursue somewhat different goals: composi-
tional timing-sensitive security. Another difference is that their def-
initions consider the dimensions in separation: it is not possible to
explicitly specify where a particular piece of data can be released.
For a simple example, consider a scenario of releasing the aver-
age of salaries h1 . . . hn and, some time later, possibly under some
conditions, releasing the actual salaries. (Perhaps when a company
goes bankrupt, the salaries have to be revealed to the authorities.)
A legitimate program for these purposes is:

l := declassify((h1 + . . . + hn)/n);

. . . // some code that does not assign to h1 . . . hn

l1 := declassify(h1); . . . ; ln := declassify(hn)

This is a reasonable program, and it is accepted by most definitions
under discussion, including localized delimited release. Consider
the following occlusion attack:

h′
2 := h2; . . . ; h

′
n := hn;

h2 := h1; . . . ; hn := h1;

l := declassify((h1 + . . . + hn)/n);

h2 := h′
2; . . . ; hn := h′

n; //h′
1 . . . h′

n are not used further
. . . // some code that does not assign to h1 . . . hn

l1 := declassify(h1); . . . ; ln := declassify(hn)

Clearly, the first declassification prematurely releases h1. How-
ever, the attack is accepted by all of the WHAT 1, WHAT 2, and
WHERE definitions because of the independent treatment of the
dimensions. On the other hand, this program is rejected by local-
ized delimited release (similarly to the attack in the average exam-
ple of Section 3) because escape hatch policies of localized delim-
ited release are location-sensitive.

8. Conclusion
We have presented localized delimited release, a security charac-
terization that combines the what and where dimensions of infor-
mation release. Localized delimited release is a fully fledged com-
bination of these dimensions. This combination offers protection
from information laundering, which is reassured by the semantic
consistency, conservativity, and non-occlusion principles of declas-
sification [SS05].

Future work concerns including the who and when dimensions
in the security definition and possibilities for parameterizing both
the definition and enforcement mechanism in the degree of secu-
rity along each dimension. Another direction is enforcement mech-
anisms that are more permissive than the type system discussed in
the paper. In particular, we are interested in enforcing the security
condition at the level of Java bytecode.

Acknowledgments
Thanks are due to David Naumann and David Sands for fruitful
discussions on an earlier draft of this paper and to Heiko Mantel

and Alexander Reinhard for helpful comments. This work was
funded in part by the Swedish Research Council and in part by
the Information Society Technologies program of the European
Commission, Future and Emerging Technologies, under the IST-
2005-015905 Mobius project.

References
[ABHR99] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core

calculus of dependency. In Proc. ACM Symp. on Principles
of Programming Languages, pages 147–160, January 1999.

[AS07] A. Askarov and A. Sabelfeld. Gradual release: Unifying
declassification, encryption and key release policies. In Proc.
IEEE Symp. on Security and Privacy, May 2007.

[BPR04] A. Bossi, C. Piazza, and S. Rossi. Modelling downgrading in
information flow security. In Proc. IEEE Computer Security
Foundations Workshop, pages 187–201, June 2004.

[BS06] N. Broberg and D. Sands. Flow locks: Towards a core
calculus for dynamic flow policies. In Proc. European Symp.
on Programming, volume 3924 of LNCS, pages 180–196.
Springer-Verlag, 2006.

[CM04] S. Chong and A. C. Myers. Security policies for downgrading.
In ACM Conference on Computer and Communications
Security, pages 198–209, October 2004.

[Coh78] E. S. Cohen. Information transmission in sequential
programs. In R. A. DeMillo, D. P. Dobkin, A. K. Jones,
and R. J. Lipton, editors, Foundations of Secure Computation,
pages 297–335. Academic Press, 1978.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security
models. In Proc. IEEE Symp. on Security and Privacy, pages
11–20, April 1982.

[GM04] R. Giacobazzi and I. Mastroeni. Abstract non-interference:
Parameterizing non-interference by abstract interpretation. In
Proc. ACM Symp. on Principles of Programming Languages,
pages 186–197, January 2004.

[GM05] R. Giacobazzi and I. Mastroeni. Adjoining declassification
and attack models by abstract interpretation. In Proc.
European Symp. on Programming, volume 3444 of LNCS,
pages 295–310. Springer-Verlag, April 2005.

[JL00] R. Joshi and K. R. M. Leino. A semantic approach to secure
information flow. Science of Computer Programming, 37(1–
3):113–138, 2000.

[LZ05] P. Li and S. Zdancewic. Downgrading policies and relaxed
noninterference. In Proc. ACM Symp. on Principles of
Programming Languages, pages 158–170, January 2005.

[Man01] H. Mantel. Information flow control and applications—
Bridging a gap. In Proc. Formal Methods Europe, volume
2021 of LNCS, pages 153–172. Springer-Verlag, March 2001.

[MR07] H. Mantel and A. Reinhard. Controlling the what and where
of declassification in language-based security. In Proc.
European Symp. on Programming, volume 4421 of LNCS,
pages 141–156. Springer-Verlag, 2007.

[MS04] H. Mantel and D. Sands. Controlled downgrading based
on intransitive (non)interference. In Proc. Asian Symp.
on Programming Languages and Systems, volume 3302 of
LNCS, pages 129–145. Springer-Verlag, November 2004.

[Mul00] J. Mullins. Non-deterministic admissible interference. J. of
Universal Computer Science, 6(11):1054–1070, 2000.

[Pin95] S. Pinsky. Absorbing covers and intransitive non-interference.
In Proc. IEEE Symp. on Security and Privacy, pages 102–113,
May 1995.

[Pro01] F. Prost. On the semantics of non-interference type-based
analyses. In JFLA’001, Journées Francophones des Langages
Applicatifs, January 2001.

[RG99] A. W. Roscoe and M. H. Goldsmith. What is intransitive non-

interference? In Proc. IEEE Computer Security Foundations
Workshop, pages 228–238, June 1999.

[RS99] P. Ryan and S. Schneider. Process algebra and non-
interference. In Proc. IEEE Computer Security Foundations
Workshop, pages 214–227, June 1999.

[Rus92] J. M. Rushby. Noninterference, transitivity, and channel-
control security policies. Technical Report CSL-92-02, SRI
International, 1992.

[SM03] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE J. Selected Areas in Communications,
21(1):5–19, January 2003.

[SM04] A. Sabelfeld and A. C. Myers. A model for delimited
information release. In Proc. International Symp. on Software
Security (ISSS’03), volume 3233 of LNCS, pages 174–191.
Springer-Verlag, October 2004.

[SS01] A. Sabelfeld and D. Sands. A per model of secure information
flow in sequential programs. Higher Order and Symbolic
Computation, 14(1):59–91, March 2001.

[SS05] A. Sabelfeld and D. Sands. Dimensions and principles
of declassification. In Proc. IEEE Computer Security
Foundations Workshop, pages 255–269, June 2005.

[SS07] A. Sabelfeld and D. Sands. Declassification: Dimensions and
principles. J. Computer Security, 2007. To appear.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A sound type system
for secure flow analysis. J. Computer Security, 4(3):167–187,
1996.

[Zda04] S. Zdancewic. Challenges for information-flow security. In
Proc. Programming Language Interference and Dependence
(PLID), August 2004.

Appendix
This appendix presents the proofs of Theorems 1 and 2.

THEOREM 1. If command c is secure, then c satisfies the delimited
release security condition.

Proof. Assume the command c contains exactly n declassified
expressions e1 . . . en and assume for memories m1 and m2 that
m1 =L m2, 〈c, m1〉 ⇓ m′

1, 〈c, m2〉 ⇓ m′
2, and for all i we

have m1(ei) = m2(ei). In order to show that c satisfies delimited
release, we need to prove m′

1 =L m′
2.

By the definition of localized delimited release, m1 =L m2

implies 〈c, m1, ∅〉 ∼m1,m2 〈c, m2, ∅〉. Because both configura-
tions terminate, there exist p and r such that we can write down
the execution steps of 〈c, m1, ∅〉 and 〈c, m2, ∅〉 in our semantics as
follows:

〈c, m1, ∅〉 = 〈c0
1, m

0
1, E

0
1〉 −→ 〈c1

1, m
1
1, E

1
1〉 −→ . . .

−→ 〈cp
1, m

p
1, E

p
1 〉 = 〈stop, m′

1, E
p
1 〉

〈c, m2, ∅〉 = 〈c0
2, m

0
2, E

0
2〉 −→ 〈c1

2, m
1
2, E

1
2〉 −→ . . .

−→ 〈cr
2, m

r
2, E

r
2〉 = 〈stop, m′

2, E
r
1〉

By bisimilarity, there exists a low bisimulation Rm1,m2 such that
〈c, m1, ∅〉 Rm1,m2 〈c, m2, ∅〉. We know that 〈c, m1, ∅〉 ⇓ and
〈c, m2, ∅〉 ⇓. By requirement 2(ii) of Definition 2, 〈c, m2, ∅〉 −→∗

〈cq
2, m

q
2, E

q
2〉 for some q ∈ {0 . . . r} so that 〈c1

1, m
1
1, E

1
1〉 Rm1,m2

〈cq
2, m

q
2, E

q
2〉. By simple induction on p, we obtain that there exists

t ∈ {0 . . . r} such that 〈stop, mp
1, E

p
1 〉 Rm1,m2 〈ct

2, m
t
2, E

t
2〉 and

thus 〈stop, m′
1, E

p
1 〉 Rm1,m2 〈ct

2, m
t
2, E

t
2〉. Because Rm1,m2 is

symmetric, we have 〈ct
2, m

t
2, E

t
2〉 Rm1,m2 〈stop, m′

1, E
p
1 〉. We

can now repeatedly apply requirement 2(ii) of Definition 2 to the
execution of 〈ct

2, m
t
2, E

t
2〉 to finally obtain 〈stop, mr

2, E
r
2〉 Rm1,m2

〈stop, mp
1, E

p
1 〉 and thus 〈stop, m′

1, E
p
1 〉 Rm1,m2 〈stop, m′

2, E
r
2〉.

We have m1 I(Ep
1) m2 because Ep

1 is subsumed by the set of all

escape hatch expressions (Ep
1 ⊆ ∪i=1...n{ei}), and because m1

and m2 agree on all escape hatch expressions (m1(ei) = m2(ei)
for all i). Hence, by requirement 2(i) of Definition 2, we conclude
m′

1 =L m′
2. 2

THEOREM 2. If command c is typable, then c satisfies localized
delimited release.

Proof. By induction on the type derivation. The case of the sub-
sumption rule is straightforward. Suppose m1 =L m2, 〈c, m1, ∅〉 ⇓
〈m′

1, E1〉, and 〈c, m2, ∅〉 ⇓ 〈m′
2, E2〉. The rest of the rules are

structural:

skip Relation Rm1,m2 = {(〈skip, m1, ∅〉, 〈skip, m2, ∅〉),
(〈stop, m1, ∅〉, 〈stop, m2, ∅〉)} is an m1, m2-low bisimulation be-
cause the low-equality of m1 and m2 is preserved by a computation
step.

x := e Consider Rm1,m2 = {(〈x := e, m1, ∅〉, 〈x :=
e, m2, ∅〉), (〈stop, m′

1, E〉, 〈stop, m′
2, E〉)}. We need to show that

Rm1,m2 is an m1, m2-low bisimulation. Clearly, E1 = E2 = E
for some E, which preserves requirement 1 after one step. If x is
high, then m′

1 =L m′
2, which preserves requirement 2(i) after one

step.
If x is low, we know that E is the (possibly empty) set of

declassified expressions in expression e. Suppose m1 I(E) m2,
which means that all escape hatch expressions in e agree on the
memories m1 and m2. Therefore, m′

1 =L m′
2, which preserves

requirement 2(i) after one step.

c1; c2 Both c1 and c2 must be typable. Assume 〈c1, m1, ∅〉 ⇓
〈m′′

1 , E′′
1 〉 and 〈c1, m2, ∅〉 ⇓ 〈m′′

2 , E′′
2 〉. By induction hypothesis,

〈c1, m1, ∅〉 ∼m1,m2 〈c1, m2, ∅〉. Hence, there is an m1, m2-low
bisimulation R1

m1,m2 , where 〈c1, m1, ∅〉R1
m1,m2〈c1, m2, ∅〉.

If 〈stop, m′′
1 , E′′

1 〉¬R1
m1,m2〈stop, m′′

2 , E′′
2 〉 or m1 ¬I(E′′

1)
m2, then the following relation

Rm1,m2 = {(〈c1
1; c2, m

′′′
1 , E′′′

1 〉, 〈c2
1; c2, m

′′′
2 , E′′′

2 〉) |
〈c1, m1, ∅〉 −→∗ 〈c1

1, m
′′′
1 , E′′′

1 〉 &

〈c1, m2, ∅〉 −→∗ 〈c2
1, m

′′′
2 , E′′′

2 〉 &

〈c1
1, m

′′′
1 , E′′′

1 〉 R1
m1,m2 〈c

2
1, m

′′′
2 , E′′′

2 〉}
is an m1, m2-low bisimulation for c1; c2.

If 〈stop, m′′
1 , E′′

1 〉R1
m1,m2〈stop, m′′

2 , E′′
2 〉 and m1 I(E′′

1) m2,
then m′′

1 =L m′′
2 by requirement 2(i) for R1

m1,m2 . By induc-
tion hypothesis, 〈c2, m

′′
1 , ∅〉 ∼m′′

1 ,m′′
2
〈c2, m

′′
2 , ∅〉, i.e., there is

an m′′
1 , m′′

2 -low bisimulation R2
m1,m2 , where 〈c2, m

′′
1 , ∅〉R2

m′′
1 ,m′′

2

〈c2, m
′′
2 , ∅〉. Consider relation

Rm1,m2 = {(〈c1
1; c2, m

′′′
1 , E′′′

1 〉, 〈c2
1; c2, m

′′′
2 , E′′′

2 〉) |
〈c1, m1, ∅〉 −→∗ 〈c1

1, m
′′′
1 , E′′′

1 〉 &

〈c1, m2, ∅〉 −→∗ 〈c2
1, m

′′′
2 , E′′′

2 〉 &

〈c1
1, m

′′′
1 , E′′′

1 〉 R1
m1,m2 〈c

2
1, m

′′′
2 , E′′′

2 〉}
∪ {(〈c1

2, m
′′′
1 , E′′

1 ∪ E′′′
1 〉, 〈c2

2, m
′′′
2 , E′′

2 ∪ E′′′
2 〉) |

〈c2, m
′′
1 , ∅〉 −→∗ 〈c1

2, m
′′′
1 , E′′′

1 〉 &

〈c2, m
′′
2 , ∅〉 −→∗ 〈c2

2, m
′′′
2 , E′′′

2 〉 &

〈c1
2, m

′′′
1 , E′′′

1 〉 R2
m′′

1 ,m′′
2
〈c2

2, m
′′′
2 , E′′′

2 〉}

Clearly, 〈c1; c2, m1, ∅〉 Rm1,m2 〈c1; c2, m2, ∅〉. To see that
this relation is an m1, m2-low bisimulation, we assume that two
terminating configurations cfg1 and cfg2 are related cfg1 Rm1,m2

cfg2 and show that requirements 1 and 2 are satisfied. We consider
two cases.

In the first case, we obtain cfg1 = 〈c1
1; c2, m

′′′
1 , E′′′

1 〉 and
cfg2 = 〈c2

1; c2, m
′′′
2 , E′′′

2 〉, where we have 〈c1, m1, ∅〉 −→∗

〈c1
1, m

′′′
1 , E′′′

1 〉, 〈c1, m2, ∅〉 −→∗ 〈c2
1, m

′′′
2 , E′′′

2 〉, and 〈c1
1, m

′′′
1 ,

E′′′
1 〉 R1

m1,m2 〈c2
1, m

′′′
2 , E′′′

2 〉. The latter gives us requirements 1
and 2(i) for relation Rm1,m2 .

Assume cfg1 −→ cfg ′
1. If c1

1 has not terminated, then require-
ment 2(ii) follows from requirement 2(ii) of R1

m1,m2 . The inter-
esting case is cfg1 = 〈c1

1; c2, m
′′′
1 , E′′′

1 〉 −→ 〈c2, m
′′
1 , E′′

1 〉 and
〈c1

1, m
′′′
1 , E′′′

1 〉 −→ 〈stop, m′′
1 , E′′

1 〉. In this case, we also know
that 〈stop, m′′

1 , E′′
1 〉 R1

m1,m2 〈stop, m′′
2 , E′′

2 〉. Therefore, with
cfg2 −→∗ cfg ′

2 = 〈c2, m
′′
2 , E′′

2 〉 and recalling that 〈c2, m
′′
1 , ∅〉

R2
m′′

1 ,m′′
2
〈c2, m

′′
2 , ∅〉 we note that 〈c2, m

′′
1 , E′′

1 〉 and 〈c2, m
′′
2 , E′′

2 〉
are indeed related by Rm1,m2 , which gives us requirement 2(ii).

In the second case, we obtain cfg1 = 〈c1
2, m

′′′
1 , E′′

1 ∪ E′′′
1 〉

and cfg2 = 〈c2
2, m

′′′
2 , E′′

2 ∪E′′′
2 〉, where we have 〈c2, m

′′
1 , ∅〉 −→∗

〈c1
2, m

′′′
1 , E′′′

1 〉, 〈c2, m
′′
2 , ∅〉 −→∗ 〈c2

2, m
′′′
2 , E′′′

2 〉, and
〈c1

2, m
′′′
1 , E′′′

1 〉 R2
m′′

1 ,m′′
2
〈c2

2, m
′′′
2 , E′′′

2 〉.
The key observation of the proof is that U1 ∩ D2 = ∅ from the

typing rule for the sequential composition implies:

m1 I(E′′′
i) m2 ⇔ m′′

1 I(E′′′
i) m′′

2 , i = 1, 2

In other words, variables that appear in expressions that may be de-
classified in c2 (namely, expressions from E′′′

i), are never updated
in c1. Therefore, memories that agree on these expressions before
starting c1 just as well agree on them before c2, and visa versa.

To show requirement 1 assume m1 I(E′′
1 ∪ E′′′

1) m2. We have
m1 I(E′′

1 ∪E′′′
1) m2 ⇔ m1 I(E′′

1) m2 ∧ m1 I(E′′′
1) m2. By in-

duction hypothesis m1 I(E′′
1) m2 ⇔ m1 I(E′′

2) m2. Also, by the
above observation and the induction hypothesis m1 I(E′′′

1) m2 ⇔
m′′

1 I(E′′′
1) m′′

2 ⇔ m′′
1 I(E′′′

2) m′′
2 ⇔ m1 I(E′′′

2) m2. Hence,
m1 I(E′′

2 ∪ E′′′
2) m2.

For requirement 2, assume m1 I(E′′
1 ∪ E′′′

1) m2. This implies
m1 I(E′′′

1) m2. Applying induction hypothesis we obtain 2(i)
from 2(i) for R2

m′′
1 ,m′′

2
. Finally, requirement 2(ii) follows from the

construction of Rm′′
1 ,m′′

2
.

if e then c1 else c2 From Γ, pc ` e : `,D we obtain two
cases. If ` t pc = high , then since commands c1 and c2 are both
typable in high context, no low updates or declassifications are
allowed in these commands. This implies D1 = D2 = ∅.
Consider the relation Rm1,m2= {(〈c′1, m′

1, E〉, 〈c′2, m′
2, E〉 |

〈if e then c1 else c2, m
′
i, ∅〉 −→∗ 〈c′i, m′

i, E〉}, where E is
the (possibly empty) set of released expressions obtained by eval-
uating the guard e. This relation trivially satisfies requirement 1.
Next, m1 I(E) m2 implies m1 =L m2. Moreover, because no low
updates are allowed in c1 and c2, low-equivalence of the updated
memories is preserved along the execution, which, by transitivity,
gives us the requirement 2(i). Finally, 2(ii) holds by construction
of Rm1,m2 .

If `tpc = low , then by induction hypothesis there exists a pair
of relations R1

m1,m2 and R2
m1,m2 such that 〈c1, m1, ∅〉 R1

m1,m2

〈c1, m2, ∅〉, and 〈c2, m1, ∅〉 R2
m1,m2 〈c2, m2, ∅〉. Consider the re-

lation Rm1,m2= {(〈if e then c1 else c2, m1, ∅〉, 〈if e then c1

else c2, m2, ∅〉)} ∪2
j=1 {(〈c1

j , m
′
1, E ∪E′

1〉, 〈c2
j , m2, E ∪E′

2〉) |
〈c1

j , m
′
1, E

′
1〉 Rj

m1,m2 〈c2
j , m

′
2, E

′
2〉}, where E is the (possibly

empty) set of released expressions obtained by evaluating the
guard e. To ensure that this relation is an m1, m2-low bisimula-
tion we show that it satisfies requirements 1 and 2.

Applying induction hypothesis, m1 I(E ∪ E′
1) m2 ⇔

m1 I(E) m2 ∧m1 I(E′
1) m2 ⇔ m1 I(E) m2 ∧m1 I(E′

2) m2 ⇔
m1 I(E ∪ E′

2) m2, which shows requirement 1.
For requirement 2, assume m1 I(E ∪ E′

1) m2, which implies
m1 I(E) m2 and m1 I(E′

1) m2. Then, m1 I(E) m2 implies that
both runs agree on the value of the guard, and hence take the same
branch, say c1. We can then apply the induction hypothesis for
that branch and m1 I(E′

1) m2 gives us m1 =L m2, which estab-
lishes 2(i). Similarly, 2(ii) follows from the induction hypothesis.

while e do c1 Because only terminating runs are of interest, the
proof is a combination of cases for the sequential composition and
conditionals.

2

