
Gradual Release: Unifying Declassification, Encryption and Key Release Policies

Aslan Askarov Andrei Sabelfeld
Department of Computer Science and Engineering

Chalmers University of Technology
412 96 Göteborg, Sweden

Abstract

Information security has a challenge to address: en-
abling information-flow controls with expressive informa-
tion release (or declassification) policies. Existing ap-
proaches tend to address some aspects of information re-
lease, exposing the other aspects for possible attacks. It
is striking that these approaches fall into two mostly sep-
arate categories: revelation-based (as in information pur-
chase, aggregate computation, moves in a game, etc.) and
encryption-based declassification (as in sending encrypted
secrets over an untrusted network, storing passwords, etc.).

This paper introduces gradual release, a policy that uni-
fies declassification, encryption, and key release policies.
We model an attacker’s knowledge by the sets of possible se-
cret inputs as functions of publicly observable outputs. The
essence of gradual release is that this knowledge must re-
main constant between releases. Gradual release turns out
to be a powerful foundation for release policies, which we
demonstrate by formally connecting revelation-based and
encryption-based declassification. Furthermore, we show
that gradual release can be provably enforced by security
types and effects.

1 Introduction

In Proc. IEEE Symposium on Security and Privacy, Berkeley/Oakland, CA, May 2007.
© IEEE

Information security [32] has a challenge to address:
enabling information flow controls with expressive infor-
mation release (or declassification) policies [32, 42, 34]. In
a scenario of systems that operate on data with different
sensitivity levels, the goal is to provide security assurance
via restricting the information flow within the system.
However, allowing no flow whatsoever from secret (high)
inputs to public (low) outputs (as prescribed by nonin-
terference [16]) is too restrictive because many systems
deliberately declassify information from high to low.

Characterizing and enforcing declassification policies is
the focus of an active area of research [34]. However, exist-
ing approaches tend to address selected aspects of informa-

tion release, exposing the other aspects for possible attacks.
It is striking that these approaches fall into two mostly sep-
arate categories: revelation-based (as in information pur-
chase, aggregate computation, moves in a game, etc.) and
encryption-based declassification (as in sending encrypted
secrets over an untrusted network, storing passwords, etc.).
It is essential that declassification policies support a combi-
nation of these categories: for example, a possibility to re-
lease the result of encryption should not be abused to release
cleartext through the same declassification mechanism.

This paper introduces gradual release, a policy that uni-
fies declassification, encryption, and key release policies.
As we explain below, the latter is not only a useful fea-
ture, but also a vital component for connecting revelation-
based and encryption-based declassification. We model an
attacker’s knowledge by the sets of possible secret inputs
as functions of publicly observable outputs. The essence of
gradual release is that this knowledge must remain constant
between releases. Gradual release turns out to be a powerful
foundation for release policies, which we demonstrate by
formally connecting revelation-based and encryption-based
declassification.

When it comes to handling encryption, there is a demand
for expressing rich policies beyond declassification at the
point of encryption. To this end, a desirable ingredient in
declassification policies is reasoning about released keys.
In bit commitment, premature revelation of the bit should
be prevented by not releasing the secret key until neces-
sary. In a media distribution scenario—when large media
is distributed in encrypted form, and the key is supplied on
the date of media release—early key release should be pre-
vented. In addition, key release policies are important for
mental poker [35, 9, 4] (for playing poker without a trusted
third party), where the participants reveal their keys for each
other at the end of the game, in order to prove that they were
not cheating during the game. In this protocol too, it should
not be possible to release secret keys prematurely or encrypt
with a key that has already been released.

Gradual release allows for reasoning about newly gener-
ated and released keys. In fact, this combination turns out to

be crucial for connecting revelation-based and encryption-
based declassification. We show that gradual release for
revelation-based declassification can be represented by a
rewardingly simple encryption-based declassification: de-
classifying an expression corresponds to encrypting the ex-
pression with a fresh key and immediately releasing the key.

As a result, gradual release is, to the best of our knowl-
edge, the first framework to unify revelation-based and
encryption-based declassification policies. Furthermore, we
show that gradual release can be provably enforced by se-
curity types and effects.

Structure-wise, Section 2 introduces gradual release, il-
lustrates its properties, and shows how to enforce it by a
security type system for a simple declassification-enabled
language. Section 3 enriches the language with key gen-
eration, encryption, and key release primitives. Section 4
applies gradual release to the enriched language. Section 5
presents a type and effect system that enforces gradual re-
lease for the enriched language. Section 6 provides useful
examples of typed programs. Section 7 discusses related
work, and Section 8 concludes.

2 Gradual release

Gradual release is a general notion, defined in terms of
events (which are classified into low and high, with some
of the low ones classified as release events). Of particu-
lar interest are language-based instantiations of this model,
where events are generated by program constructs. A direct
benefit of such instantiations is the possibility of enforc-
ing gradual release by static analysis. To be concrete (but
without loss of generality), we present gradual release for a
simple imperative language with declassification. We show
that gradual release is a conservative extension of noninter-
ference and demonstrate how to provably enforce gradual
release by a security type system.

Language Figure 1 presents the syntax of the language,
which contains expressions e and commands c. For sim-
plicity, we assume that variables are assigned one of the
two security levels: L (low) or H (high), forming a simple
security lattice, where L @ H. These levels are recorded in
the security environment Γ, a mapping from variable names
to security levels. The construct declassify(e) in an as-
signment is provided for declassifying the level of e to L.

e ::= n | x | e op e
c ::= skip | x := e | c; c | if e then c else c

| while e do c | x := declassify(e)

Figure 1. Simple imperative language

Low-equivalence Memories are mappings of variable
names to values. Two memories M1, M2 are low-equivalent
with respect to a security environment Γ if ∀x . Γ(x) v
L =⇒ M1(x) = M2(x). This is denoted as M1 ∼Γ M2.

Semantics and low events As is standard, expressions
evaluate according to rules of the form 〈M, e〉 ⇓ n , where
〈M, e〉 is a configuration consisting of the memory M and
the expression to evaluate e, and n is the resulting value.

Semantics for commands are expressed by small-step
transitions between configurations. These transitions have
either the form 〈M, c〉 α−→ 〈M ′, c′〉, which corresponds to a
step from configuration 〈M, c〉 to configuration 〈M ′, c′〉, or

the form 〈M, c〉 ↓−→ M ′, which corresponds to termination
in the memory M ′.

A transition is low if it is due to an assignment to a
low variable or termination. The event α ∈ {ε, `} records
whether the transition is low (reflected by the label `, where
` is either the projection M ′

L of the low part of M ′ or a ter-
mination event ↓) or otherwise (reflected by the empty label

ε). We write 〈M, c〉
~̀

−→∗ 〈M ′, c′〉 (resp. 〈M, c〉
~̀

−→∗ M ′)
when 〈M ′, c′〉 (resp. M ′) is reachable from 〈M, c〉 by a se-
quence of small steps, where ~̀ represents the sequence of
generated low events. We classify the termination event ↓
as low. If an event in a sequence is a termination event, then
no other events may be generated after it.

A particular kind of low events are due to declassify
commands. We refer to those events as release events. Re-
lease events record the points of intentional information re-
lease by a command. The complete semantics of the lan-
guage is available in an accompanying technical report [5].

Knowledge We let the attacker observe the low projec-
tion M0

L of the initial memory M0, and all intermediate
low events `1, . . . , `n generated during a run of a command
c. Given these observations, the attacker may infer the set
of initial memories that could possibly have led to these
events. We refer to this set as the attacker’s knowledge about
the initial memory.

Semantically, the knowledge is a set of tuples, where
each tuple represents a possible initial memory. For exam-
ple, consider the program l := h1 + h2 and a sample run
that yields a low event ` where `(l) = 10. The attacker’s
knowledge in this case is all such memories that the sum of
h1 and h2 is 10:

h1 h2 . . .
{ (1, 9, . . .)

(2, 8, . . .)
(3, 7, . . .)
(4, 6, . . .)
. . . }

2

Note that in our terminology knowledge corresponds to un-
certainty about the tuples in the knowledge set: any of the
tuples is a possible input. The actual knowledge of the at-
tacker is that tuples outside the knowledge set are not pos-
sible inputs.

As the computation progresses, the uncertainty might de-
crease because new observations might render some initial
inputs impossible. This means that the knowledge set may
shrink with time.

Let L(c, M0
L) be the set of possible low event sequences

that a program c may generate along terminating traces that
start in some memory whose low projection is M0

L :

L(c,M0
L) , {~̀ | ∃M,M ′ . ML = M0

L ∧〈M, c〉
~̀

−→∗ M ′}
Based on a program c, a low projection of the initial mem-
ory M0

L , and a (possibly empty) sequence of low events
~̀ ∈ L̂(c,M0

L), where L̂(c,M0
L) denotes the prefix closure

of L(c,M0
L), the knowledge is defined as:

k(c,M0
L , ~̀) , {M |ML = M0

L ∧ ∃M ′, c′ .

〈M, c〉
~̀

−→∗ 〈M ′, c′〉 ∨ 〈M, c〉
~̀

−→∗ M ′}
This set records all possible inputs that lead to observ-
ing ~̀ when starting with initial memories that agree with
M0

L on the low variables. This definition of knowledge is
termination-sensitive (cf. [32]) because observing that pro-
gram does not enter an infinite loop may lead to refining the
knowledge.

Given a command c and the low projection of a mem-
ory M0

L , we also define the initial knowledge k(c,M0
L) that

corresponds to all possible initial memories that lead to ter-
mination:

k(c,M0
L) , {M |ML = M0

L ∧ ∃M ′, ~̀ . 〈M, c〉
~̀

−→∗ M ′}
Using this definition, we define a termination-insensitive
(cf. [32]) version of knowledge as:

k↓(c,M0
L , ~̀) , k(c,M0

L , ~̀) ∩ k(c, M0
L)

As we expect, the attacker may not “forget” the knowl-
edge about the initial states, i.e., each new observable event
may only refine the knowledge:

Proposition 1 (Monotonicity of knowledge). For a com-
mand c, some M0

L , and ~̀
n ∈ L(c,M0

L), where ~̀
n =

`1, . . . , `n, we have

∀i . 1 ≤ i ≤ n . k↓(c,M0
L , ~̀i−1) ⊇ k↓(c,M0

L , ~̀i)

where k↓(c,M0
L , ~̀0) , k(c, M0

L). The proofs of this and
the following results are available in an accompanying tech-
nical report [5].

Noninterference We present a definition of noninterfer-
ence and demonstrate how to represent it in the knowledge-
based setting.

Definition 1 (Noninterference). A command c satisfies non-

interference if whenever M1 ∼Γ M2, 〈M1, c〉
~̀1−→∗ M ′

1,

and 〈M2, c〉
~̀2−→∗ M ′

2 then ~̀
1 = ~̀

2 (and M ′
1 ∼Γ M ′

2).

The definition requires that when starting with low-
equivalent memories, terminating traces must agree on their
low events (and, as a consequence, on the low parts of the
resulting memories). This corresponds to the absence of
flows from high to low data.

We show that this flavor of noninterference is straight-
forwardly expressible in the knowledge-based setting:

Proposition 2. A command c satisfies noninterference if
and only if

∀M0
L , ~̀ ∈ L(c,M0

L) . k↓(c, M0
L , ~̀) = k(c,M0

L)

The proposition states that the attacker’s knowledge does
not benefit from observing a run of a noninterfering pro-
gram: all memories that agree with M0

L on the low part are
possible inputs regardless of the observed low events ~̀.

Gradual release With every new low event produced by
a program run, the attacker’s knowledge may become more
precise, i.e., the set of possible initial memories may be-
come smaller. The only intentional points when this knowl-
edge may be narrowed down are the release events, as spec-
ified by declassification primitives. Gradual release accepts
changes in the knowledge that are caused by the release
events and requires that no other low events may affect the
knowledge.

Definition 2 (Gradual release). A command c satisfies grad-
ual release if for all M0

L and ~̀ ∈ L(c, M0
L), where ~̀

n =
`1, . . . , `n, n ≥ 1, of which `r1 , . . . , `rm are all release
events, we have:

∀i . 1 ≤ i ≤ n . (∀j . rj 6= i) =⇒
k↓(c,M0

L , ~̀i−1) = k↓(c,M0
L , ~̀i)

where, as before, k↓(c,M0
L , ~̀0) , k(c,M0

L). The gradual
release requirement on the evolution of knowledge is illus-
trated in Figure 2, where the vertical axis is uncertainty, and
the horizontal axis is time.

In the examples throughout the paper, variables l, l1, . . .
and h, h1, . . . are assumed to be low and high, respectively.
Examples of programs that are rejected by gradual release
are:
l := h

3

Figure 2. Gradual release

where the knowledge is narrowed down from all possible
high inputs to exactly one, and:
if h then l := declassify(h1)

where the knowledge is narrowed down to memories where
h is zero in the case when no low events are observable
before termination.

Examples of programs that are accepted by gradual re-
lease are:
l := declassify(h)

where the release event due to declassification justifies the
change in the knowledge, and:
l:=declassify(h != 0); if l then l1 := declassify(h1)

where the non-zero test expression is explicitly released be-
fore the choice whether to declassify h1 is made.

In contrast to some declassification definitions (e.g., [10,
33], but in agreement with others (e.g., [29]), gradual re-
lease assumes that the attacker observes more information
about traces (namely, effects of assignments to low vari-
ables) than visible initial/final values. Moreover, the at-
tacker observes some events produced by partial program
executions. This enables natural extensions to languages
with input/output: low assignments can be viewed as im-
plicit output on a low channel. Note that breaches in se-
curity due to events that are not happening are caught by
gradual release thanks to termination events. Recall that in
the second insecure example above, if the only observable
event by the attacker is termination, then the attacker may
deduce that the assignment in the conditional did not hap-
pen, and that the initial value of h must be zero.

In a recent classification of declassification [34], release
policies are classified with respect to the what, who, where,
and when dimensions of declassification. Under this classi-
fication, gradual release is primarily a where policy because
it emphasizes that release is only allowed via declassifica-
tion points. This allows us capturing some flows that are
not represented by other dimensions. For example, the fol-
lowing program is accepted by pure what definitions such
as delimited release [33] that ignore the where aspect:
h1 := h2;
h2 := 0;
l1 := declassify (h2);

h2 := h1;
l2 := h2

Note that at the point of declassification, the attacker learns
nothing about the value of h2. However, after reaching the
assignment l2 := h2 the attacker’s knowledge will allow
inferring the value h2. This is rejected by the release policy
because the assignment l2 := h2 is not a declassification.

Compared to several where definitions, gradual release
does not rely on state resetting in-between transitions. Con-
sider, for example, the following program:
l := declassify (h);
l := h;

This innocent program is a false negative for the intransitive
downgrading [27], non-disclosure [2], flow locks [8], and
WHERE [26] definitions. These definitions reject the pro-
gram above because they demand security in the presence
of state resetting. The program is rejected by them because
resetting the secret state after declassification may reintro-
duce secret into h before it is assigned to l. However, the
program is secure according to gradual release because the
attacker does not gain any new knowledge from observing
the effect of the last assignment.

As a sanity check for our definition, we show that for
programs without release, gradual release is equivalent to
noninterference. This property is known as the conserva-
tivity principle of declassification [34]. The principle fol-
lows from Proposition 2 and because the attacker’s knowl-
edge for declassification-free programs must remain con-
stant over the execution of the program.

Proposition 3. If a command c is free of declassification
then c satisfies gradual release if and only if c satisfies non-
interference.

A final remark on the dimensions: although gradual re-
lease is primarily a where policy, it can be also viewed as a
relative what policy. Indeed, what attacker learns remains
constant with respect to the last release point. Further, it
is possible to fully integrate the what dimension into grad-
ual release. Assume a knowledge evolution sequence that
is provided explicitly as a policy (for example, in terms of
escape hatch expressions as in delimited release [33]). In
addition to the demand on constant knowledge in-between
releases, an enhanced policy might require that each refine-
ment of knowledge is in strict accordance with what can be
learned from observing the respective escape hatch expres-
sion from the sequence in the policy.

Enforcement It is straightforward to enforce gradual re-
lease by a security type system. Figure 3 presents the typing
rules for expressions and commands. The rules for catch-
ing explicit and implicit flows are standard [12, 39]. The

4

(T-INT)
Γ ` n : L

(T-VAR)
Γ(x) = σ

Γ ` x : σ

(T-OP)
Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` e1 op e2 : σ1 t σ2

(T-SKIP)
Γ, pc ` skip

(T-ASGN)
Γ ` e : σ pc t σ v Γ(x)

Γ, pc ` x := e

(T-SEQ)
Γ, pc ` c1 Γ, pc ` c2

Γ, pc ` c1; c2

(T-IF)
Γ ` e : σ Γ, pc t σ ` ci i = 1, 2

Γ, pc ` if e then c1 else c2

(T-WHILE)
Γ ` e : σ Γ, pc t σ ` c

Γ, pc ` while e do c

(T-DECL)
pc v Γ(x)

Γ, pc ` x := declassify(e)

Figure 3. Type rules for the simple language

only non-standard rule is (T-DECL), which disallows de-
classification inside of conditionals and loops with sensi-
tive guards. We call such a conditional or loop high context
and track it with the context type variable pc. By requiring
pc v Γ(x) at declassification points, we ensure that if pc is
H then we might be inside a high context, and, hence, we
may not assign the result of declassification to a variable at
level L.

Note that no information about the declassified expres-
sion e is used in the rule for declassification (T-DECL). This
is sensible because gradual release is a where policy, not a
what policy, and so the value (and even the syntax) of the
declassified expression is unimportant.

That the type system enforces gradual release is guaran-
teed by the following theorem:

Theorem 1. If Γ, pc ` c then c satisfies gradual release.

3 Language with cryptographic primitives
and key release

This section presents an enriched language that includes
cryptographic primitives and key release features.

Syntax Figure 4 displays the syntax of the language,
which is based on the one presented in [3]. Values and keys
have corresponding security levels. Values are either low
(L) or high (H). The key levels declare the maximum value
security level the key can safely encrypt. In particular, a
key at level high key (HK) may safely encrypt low and high

values, whereas a key at level low key (LK) may only safely
encrypt low values. Keys at level RK correspond to the pre-
viously secret keys that have been released and may only
safely encrypt public values.

Basic types t consist of integers int and ciphertexts
encγ τ obtained by encrypting data of primitive type τ with
keys at level γ. Primitive types τ consist of basic types la-
beled with security levels t σ, key types key γ, and pairs
(τ, τ) of primitive types.

Apart from expressions for encryption and decryption,
expressions are standard: integers, variables, total binary
operators, pair formation, and projection. Commands in-
clude the standard commands of an imperative language, a
command for generating a new key at a given security level,
and a command for releasing keys.

We assume that all variables x used in program text are
typed with primitive types according to a typing environ-
ment Γ as x : Γ(x). We also define the low projection ΓL of
the typing environment, which only includes low variables.

Semantics First we define values and environments,
which are used in the following definitions of the seman-
tics for expressions and commands. Let n ∈ Z range over
integers and k ∈ Key = KeyLK ∪ KeyHK range over keys,
where KeyLK and KeyHK are disjoint. We assume that re-
leased keys belong to the set of high keys KeyHK. Values
are built up by ordinary values: integers, keys, and pairs of
values; together with encrypted values u ∈ U = ULK ∪UHK.

values ∈ Value v ::= n | k | (v, v) | u

The system is parameterized over two symmetric en-
cryption schemes—one for the low key level γ = LK, and
one for the high key level γ = HK—represented by triples
SEγ = (Kγ , Eγ ,Dγ), where

• Kγ is a key generation algorithm that on each invoca-
tion generates a new key.

• Eγ is a nondeterministic encryption algorithm that
takes a key k ∈ Keyγ , a value v ∈ Value and returns
a ciphertext u ∈ Uγ .

• Dγ is a deterministic decryption algorithm that takes
a key k ∈ Keyγ , a ciphertext u ∈ Uγ and returns a
value v ∈ Value or fails. Decryption should satisfy
Dγ(k , Eγ(k , v)) = v.

The reason for the use of different encryption schemes
for different security levels is to lay the ground for exten-
sions to systems with more than two security levels. In such
a system we would have one encryption schema at each se-
curity level, trusted to encrypt values up to and including
the security level.

5

sec. levels σ ::= L | H
key levels γ ::= LK | HK | RK

basic types t ::= int | encγ τ
prim. types τ ::= t σ | key γ | (τ, τ)

e ::= n | x | e op e | encryptγ (e, e) | decryptγ (e, e) | (e, e) | fst(e) | snd(e)
c ::= skip | x := e | c; c | if e then c else c | while e do c | newkey(x, γ) | release(e)

Figure 4. Enriched language

As stated above, the key sets KeyLK and KeyHK of the
two different encryption schemes are distinct. We assume
that lk ranges over KeyLK and hk over KeyHK.

The full environment (or, simply, environment) E is a
tuple (M, G, R), where the memory environment M is a
mapping from variable names to values; the key-stream en-
vironment G is a mapping from key levels to streams that
generate fresh keys; and the released-key environment R is
a set of released keys.

Semantics for expressions Similarly to the simple lan-
guage in Section 2, the semantics for expressions have the
form 〈M, e〉 ⇓ v, where v is the result of evaluating expres-
sion e in memory M .

Figure 5 presents the rules specific to the treatment of
cryptography. Encryption (S-ENC) and decryption (S-DEC)
both use the encryption schemes SEγ introduced above.
The rest of the rules can be found in the full version [5]
of the paper.

Semantics for commands Similarly to Section 2, the se-
mantics for commands have either the form 〈E, c〉 α−→
〈E′, c′〉, where E and E′ are the initial and resulting en-
vironments, c and c′ are the initial and resulting commands,
and α ∈ {ε, `} is an event annotation (where ` is the projec-
tion E′

L of the environment E′ = (M ′, G′, R′) defined as

E′
L = (M ′

L, G
′(L), R′)); or the form 〈E, c〉 ↓−→ E′, which

indicates termination in the environment E′. The distinc-
tive primitive of the language is a key release command
release(k) that updates the set of released keys with the
value of the key k, in case the key is high. In Figure 6, we
display the two most interesting rules for commands. Key
generation (S-NEWKEY) takes a variable name and a level
of the key to be generated and assigns the topmost element
in the key stream associated to that level in the key-stream
environment to the variable. The rule (S-KEY-RELEASE) for
the key release primitive generates a release event and up-
dates the set of released keys R in the environment. The rest
of the rules can be found in the full version [5].

4 Gradual release for the enriched language

This section applies the gradual release approach to the
language defined in Section 3. Although the language does

not have a declassification construct, we show how to model
revelation-based declassification using key generation, en-
cryption, key release, and decryption. We formally connect
this model to gradual release in the simple language from
Section 2.

Encryption model We adopt the encryption model of [3]
and consider nondeterministic encryption schemes with ini-
tial vectors. As foreshadowed in Section 3, encryption
schemes are represented as triples of the form (K, E ,D),
where K is a key generation algorithm, E is an encryption
algorithm, and D is a decryption algorithm. The encryption
algorithm is a function of a key, a plaintext, and an initial
vector (which we sometimes omit when its value is unim-
portant). For the same key and plaintext it returns different
ciphertexts depending on the value of the initial vector. Two
ciphertexts are low-related if they have been encrypted with
the same initial vector iv:

∀k1, k2, v1, v2 . E(k1, v1, iv) .= E(k2, v2, iv)

This relation has the following properties: (i) different ci-
phertexts produced by one plaintext and one key have dif-
ferent initial vectors and are not low-related, and (ii) since
every plaintext and key produce ciphertexts using all ini-
tial vectors, for each ciphertext produced by one plaintext
and key there will be exactly one low-related ciphertext for
every other choice of plaintext and key.

This construction prevents occlusion, which would hap-
pen if we treated all ciphertexts as equal, as illustrated in an
example that follows Proposition 4.

Low-equivalence Let E1 ∼Γ E2 denote that the environ-
ments E1 and E2 are low-equivalent with respect to the en-
vironment type Γ (i.e., their low projections are the same).

The low-equivalence relation, presented in Figure 7,
draws on one in [3]. In addition, it also reflects that once
a key has been released, it is unsafe to encrypt with this key
or, more precisely, assign the result of the encryption to a
low variable.

Low-equivalence is defined structurally with respect to
the type of its arguments and the set of released keys r̂. For
example, two high keys are indistinguishable (i.e., related
by low-equivalence) if none of them has been released (rule
(LE-KEY-SK)). On the other hand, only equivalent values of

6

(S-ENC)
〈M, e1〉 ⇓ k 〈M, e2〉 ⇓ v k ∈ Keyγ u = Eγ(k , v)

〈M, encryptγ (e1, e2)〉 ⇓ u

(S-DEC)
〈M, e1〉 ⇓ k 〈M, e2〉 ⇓ u k ∈ Keyγ v = Dγ(k , u)

〈M, decryptγ (e1, e2)〉 ⇓ v

Figure 5. Selected semantic rules for expressions

(S-NEWKEY)
G(γ) = k · ks

〈(M, G,R), newkey(x, γ)〉 −→ (M [x 7→ k], G[γ 7→ ks], R)

(S-KEY-RELEASE)
〈M, e〉 ⇓ k k ∈ Keyγ

〈(M,G, R), release(e)〉 r:(ML,G(L),S∪R)−→ (M,G, S ∪R)
where S =

{
{k} if γ = HK,

∅ otherwise

Figure 6. Selected semantic rules for commands

low and released keys are indistinguishable (rules (LE-KEY-
SK) and (LE-KEY-RK)).

The rules that define the low-equivalence of encrypted
values are worth highlighting. The rules (LE-ENC-L1) and
(LE-ENC-L2) both require ciphertexts to be low-related by
the relation .= on encrypted values. Their additional de-
mands on the ciphertexts depend on whether the encryp-
tion key is released and what its type is. The first rule (LE-
ENC-L1), when γ = RK, requires that low-equivalent cipher-
texts obtained with released keys must agree on the value of
the key and plaintext (because anyone can decrypt them).
This is achieved by demanding that keys and plaintexts are
low-equivalent with respect to the types tolow(key γ) and
tolow(τ). The function tolow(·), defined in Figure 7, con-
verts high primitive types into low ones.

Similarly to released keys, the demand for low keys (LE-
ENC-L1, γ = LK) is that plaintexts are low-equivalent with
respect to the type tolow(τ). The only demand for encryp-
tion with high keys (LE-ENC-L2) is that the resulting values
should be low-equivalent with respect to the primitive type
τ of the encryption type.

Uninitialized values (denoted by •) are low-equivalent
(rule (LE-ENC-L3)). The rule (LE-ENC-H) relates high ci-
phertexts if one of them is uninitialized or their primi-
tive type structures are the same (an auxiliary predicate
struct(τ, v), which holds whenever v has type structure τ ,
is given in Figure 7). Note that an uninitialized value is low-
equivalent to any other value. This is also reflected in the
rule (LE-MEM), where v• is either a value or •.

Gradual release for the enriched language Before we
proceed to gradual release for the enriched language, we
define low-equivalence on event sequences.

Note that the released-key environments, which are
explicitly recorded by low events, provide only a par-

tial view of what keys may be known to the attacker.
For example, the value of the key k2 in the expression
encryptHK (k1, (x, k2)) is not contained in the released-key
environment after k1 is released. Nevertheless, using k2 for
encrypting high values after the release of k1 would be dis-
astrous since the attacker knows the exact value of k2 and,
hence, can decrypt ciphertexts encrypted with it. Therefore,
the set of all released keys r̂ is computed, in a Dolev-Yao
style [14], by traversing low events and accumulating the
keys that depend on the ones that are already released. We
use an accumulator function r(τ, v, R) defined inductively
on a variable type τ , a value of that type v, and an initial set
of released keys R:

r(encγ τ L, u,R) = {r(tolow(τ), v, R) |
∃v, k . v = Dγ(k , u) ∧ (k ∈ R ∨ γ = LK)}

r(encγ τ H, u, R) = ∅ r(int σ, v,R) = ∅
r(key LK, k , R) = ∅ r(key HK, k , R) = ∅
r(key RK, k , R) = {k}
r((τ1, τ2), (v1, v2), R) = r(τ1, v1, R) ∪ r(τ2, v2, R)

For a given typing environment Γ and a sequence ~̀ of
low events (`1, . . . , `n), where `i = (Mi, Gi, Ri), we let:

r0 = Rn, and
rj =

⋃n
i=1{r(Γ(x),Mi(x), rj−1) | x ∈ dom (Γ)}

The set r̂ is then defined as rk such that rk = rk+1. Such a
k exists because the set of keys that can be extracted from
the sequence ~̀ of low events is finite.

Two sequences of low events ~̀ and ~̀′ are low-equivalent
if the numbers of events in each of the sequences are the
same, the sets of all released keys that are computed from
each of them are equivalent, and the sequences agree on
every respective element, i.e., memories, key generating
streams, and released-key environments are low-equivalent:

7

(LE-KEY-LK)
lk ∼r̂

key LK lk

(LE-KEY-RK)
hk ∈ r̂

hk ∼r̂
key RK hk

(LE-KEY-SK)
hk i 6∈ r̂ i = 1, 2
hk1 ∼r̂

key HK hk2

(LE-INT-L)
n ∼r̂

int L n
(LE-INT-H)

n1 ∼r̂
int H n2

(LE-ENC-L3) • ∼r̂
encγ τ L •

(LE-PAIR)
v11 ∼r̂

τ1
v21 v12 ∼r̂

τ2
v22

(v11, v12) ∼r̂
(τ1,τ2)

(v21, v22)

(LE-MEM)
∀x ∈ dom (Γ).Mi(x) = v•i (i = 1, 2) =⇒ v•1 ∼r̂

Γ(x) v•2

M1 ∼r̂
Γ M2

(LE-KGEN1)
k1 ∼r̂

key γ k2 K1 ∼r̂
γ K2

k1 ·K1 ∼r̂
γ k2 ·K2

(LE-KGEN2)
G1(HK) ∼r̂

HK G2(HK) G1(LK) ∼r̂
LK G2(LK)

G1 ∼r̂ G2

(LE-ENC-H)

∃j . uj = • ∨
struct(encγ τ H, ui) (i = 1, 2)

u1 ∼r̂
encγ τ H u2

(LE-ENC-L2)

∃vi, ki . vi = Dγ(ki, ui) i = 1, 2
k1 ∼r̂

key HK k2 v1 ∼r̂
τ v2 u1

.= u2

u1 ∼r̂
encHK τ L u2

(LE-ENC-L1)
∃vi, ki . vi = Dγ(ki, ui) i = 1, 2 k1 ∼r̂

tolow(key γ) k2 v1 ∼r̂
tolow(τ) v2 u1

.= u2

u1 ∼r̂
encγ τ L u2

tolow(t σ) = t L tolow(key LK) = key LK
tolow(key HK) = key RK tolow(key RK) = key RK

tolow((τ1, τ2)) = (tolow(τ1), tolow(τ2))

struct(int σ,n) struct(key γ, k)
struct(τ1, v1) struct(τ2, v2)

struct((τ1, τ2), (v1, v2))
∃v, k . v = Dγ(k , u) struct(key γ, k) struct(τ, v)

struct(encγ τ σ, u)

Figure 7. Low-equivalence

Ri = R′i r̂(~̀n) = r̂(~̀′n) = r̂
Mi ∼r̂

Γ M ′
i Gi ∼r̂ G′i i = 1 . . . n

~̀
n ∼Γ

~̀′
n

Similarly to the simple language, we define the set of pos-
sible low-event sequences. We assume that initial environ-
ments (which we indicate with a superscript as in E0) have
the form (M,G, ∅), i.e., their released-key sets are empty.
In such an environment, we let M(x) = • for all such x that
x : encγ τ σ, i.e., all variables of ciphertext type are unini-
tialized. Given a command c and a projection of an initial
environment E0

L , the set of possible low events L(c, E0
L) is:

L(c, E0
L) , {~̀ | ∃E, E′ . EL ∼Γ E0

L ∧ 〈E, c〉
~̀

−→∗ E′}
The definition of knowledge is in order, also similar to the
one for the simple language. Given the low projection of
an initial environment E0

L and a (possibly empty) sequence
of low events ~̀ ∈ L̂(c, E0

L), where L̂(c, E0
L) denotes the

prefix closure of L(c, Ei
L), the knowledge k(c, E0

L ,
~̀) of the

attacker is defined as:

k(c, E0
L ,

~̀) , {E | EL ∼Γ E0
L ∧ ∃E′, c′, ~̀′ .

(〈E, c〉
~̀′

−→∗ 〈E′, c′〉 ∨ 〈E, c〉
~̀′

−→∗ E′) ∧ ~̀∼Γ
~̀′}

A new ingredient—the low-equivalence of low-event se-
quences ~̀ ∼Γ

~̀′—is used in the definition, which allows
for relating ciphertexts that are obtained from different keys
and plaintexts. This prevents the knowledge from becom-
ing more precise. Otherwise, publishing a result of an en-
cryption with a high key would narrow down the knowledge
about the key and the plaintext behind the ciphertext to their
exact values, which is infeasible to infer for the attacker.

Accordingly, the definition of the initial knowledge is:

k(c, E0
L) , {E | EL ∼Γ E0

L ∧ ∃E′, ~̀ . 〈E, c〉
~̀

−→∗ E′}
and the termination-insensitive knowledge is:

k↓(c, E0
L ,

~̀) , k(c, E0
L ,

~̀) ∩ k(c, E0
L)

The definition of gradual release for the enriched lan-
guage follows Definition 2 for the simple language:

Definition 3 (Gradual release). A command c satisfies grad-
ual release if for all low projections of initial environ-
ments E0

L such that R0 = ∅ and sequences of low events
~̀ ∈ L(c, E0

L), where ~̀
n = (`1, . . . , `n), n ≥ 1, of which

`r1 , . . . , `rm are all release events, we have:

∀i . 1 ≤ i ≤ n . (∀j . rj 6= i) =⇒
k↓(c, E0

L ,
~̀
i−1) = k↓(c, E0

L ,
~̀
i)

8

where k↓(c, E0
L ,

~̀
0) , k(c, E0

L).
We illustrate the definition by simple examples (more in-

teresting examples are deferred to Section 5).
The following program is accepted by gradual release:

k := newkey(HK); l := encryptHK(k, h);

Different low-event sequences that can be produced by this
program correspond to different values of the variable l.
Since the encryption key is high, every value of l is low-
equivalent to ciphertexts produced by all other possible keys
and plaintexts. Therefore, for each possible sequence of low
events that this program may generate, the knowledge con-
tains all possible keys and plaintexts, i.e., it is equal to the
initial knowledge and remains constant throughout all runs.

Gradual release rejects the following program:
k := newkey(HK); l := encryptHK(k, h); l’:= h;

Similar to an example in Section 2, the last assignment nar-
rows down the set of possible initial values for the variable
h to exactly one.

On the other hand, gradual release accepts this program:
k := newkey(HK); l:=encryptHK(k, h); release (k); l’:= h;

There are four low events in this program: the encryption,
release statement, last assignment, and termination. As in
the previous example, publishing the result of encryption
does not change the knowledge. The release statement,
however, triggers a change in the low-equivalence for the
value of l: once the key k is released, it is only related with
ciphertexts that agree with l both on the value of the key and
the plaintext. This corresponds to refining the knowledge to
the exact values of k and h. Thus, the last assignment to l′

does not make the knowledge more precise. Gradual release
accepts this program since the only point where the knowl-
edge changes is the release event.

Conservativity with respect to cryptographically-
masked flows As a sanity check, we demonstrate that
Definition 3 is a conservative extension of possibilistic
noninterference.

Our possibilistic security definition is based on the one of
cryptographically-masked flows [3], although it represents
an attacker that observes event sequences rather than final
environments. Assume T (c, E) is the set of possible event
sequences generated by a command c in an environment E.
A command c satisfies possibilistic noninterference if:

∀E1, E2 . E1 ∼Γ E2 ∧ T (c, Ej) 6= ∅, j = 1, 2 =⇒
∀~̀1 ∈ T (c, E1) ∃~̀2 ∈ T (c, E2) . ~̀

1 ∼Γ
~̀
2

That is, for every pair of low-equivalent environments and
configurations that terminate in these environments, and for

each event sequence generated by running the first config-
uration there is a low-equivalent event sequence generated
by running the second one (and vice versa by symmetry).

Proposition 4. If a command c is free of key release primi-
tives, then c satisfies gradual release if and only if c satisfies
possibilistic noninterference.

This proposition parallels Proposition 3. If there is no
key release, then the attacker’s knowledge must stay un-
changed throughout execution. Therefore, this proposition
reduces to showing an analogue of Proposition 2, which is
straightforward.

Consider the following code, which is inspired by an oc-
clusion example from [3]. The program below is intuitively
insecure: depending on the value of h the value of y is either
a new encryption, or the copy of x. An attacker observing
that x and y are different can derive that the first branch has
been taken.
x := encryptHK(k1, h1);
if h then y := encryptHK(k2, h2);

else y := x;

Thanks to the initial-vector mechanism (described in the
beginning of the section), the program is rejected by both
gradual release and possibilistic noninterference. An initial
memory M , where the value for h is 1, produces a sequence
of low events where the final values vx and vy of x and y,
respectively, are such that vx 6 .= vy . On the other hand, a
memory M ′, where the value of h is 0 is not a part of the
knowledge. Indeed, under M ′, it is possible to produce a
low-event sequence where v = vx and v is the final value of
both x and y under M ′, but then, since the second branch is
taken, it implies v 6 .= vy . This means that we cannot reach
the final memory with the value vy for y from the mem-
ory M ′, and, therefore, M ′ is not a part of the knowledge.
Because the knowledge is refined, and there are no release
events to justify the refinement, the above program is re-
jected.

Relation to gradual release for the simple language As
another sanity check, we establish a relation to the definition
of gradual release (Definition 2) for the simple language
(Section 2). The combination of the key generation, encryp-
tion/decryption, and key release features in the enriched
language turns out to be crucial for connecting encryption-
based declassification to revelation-based information re-
lease. We can translate the general revelation-based declas-
sification command in the following way:

l := declassify(e) ↪→
k := newkey(HK); t := encryptHK(k, e);
release(k); l := decryptRK(k, t);

for some fresh temporary variable t. Assuming that the
transformation does not change other commands than de-

9

classifications, we arrive at the following formal connection
between the two definitions.

Proposition 5. A command c in the simple language satis-
fies gradual release (Definition 2) if and only if command c′

obtained from c by transformation (c ↪→ c′) in the enriched
language satisfies gradual release (Definition 3).

As an example, consider the following command in the
simple language:
if h then l := declassify(h1);

else l := declassify(h2);
l’ := h;

The transformation produces the following result in the en-
riched language:
if h then k := newkey(HK);

t := encryptHK(k, h1);
release (k);
l := decryptRK(k, t);

else
k := newkey(HK);
t := encryptHK(k, h2);
release (k);
l := decryptRK(k, t);

l’ := h;

This command is semantically equivalent to the following:
k := newkey (S);
if h then h’ := h1 else h’ := h2;
t := encryptHK(k, h’);
release (k);
l := decryptRK(k, t);
l’:= h;

In the context with no information about the values of the
variables of h1 and h2, this program (as well as the source of
the transformation) is rejected by the gradual release since
the last assignment leaks the exact value of the variable h
that is unknown to the attacker otherwise.

5 Enforcement

This section presents a type and effect system that en-
forces gradual release for the enriched language. The type
system uses an extended typing environment in which type
annotations for keys are lifted to contain unique names
κ ∈ KeyNames:

ext. basic types t̃ ::= int | encκ τ̃
ext. prim. types τ̃ ::= t̃ σ | key κ | (τ̃ , τ̃)

Such an environment can be easily obtained by enumerating
all occurrences of key types in the variable environment Γ;
the resulting extended environment is denoted as Γ̃.

The type system is also parameterized over a dependency
analysis that tracks possible and definite key dependencies
in a program. A dependency relation is maintained through-
out the typing rules, which makes the type system aware
of the key names that may or must have been released at
every program point. Since key names may appear inside

tuples and encryption types, dependency relations track de-
pendencies between extended types. The typing rules for
commands thus have the form A, Γ̃, pc ` c ⇒ A′, where A
and A′ are the initial and final dependency relations.

To access the dependency relation, the typing rules em-
ploy an interface which we describe below. An accompa-
nying technical report [5] describes a graph transformation-
based implementation that matches this interface.

Analysis interface and requirements LetA denote a key
dependency relation. The interface for accessing A is then
defined by the following syntax:

type connectors conn ::= τ̃ 1 | τ̃1 → τ̃2 | κ %
analysis transf. ::= upd (A, conn)
analysis comb. ::= join (A1,A2)
fresh type ::= fresh (A, τ)
may-type ::= typeMay (A, τ̃)
must-type ::= typeMust (A, τ̃)

Type connectors together with the operator upd (A, conn)
are used for updating the dependency relation. The τ̃ 1
connector marks the extended type τ̃ as unrelated to any
other type. The τ̃1 → τ̃2 connector indicates that if τ̃1 is
released then τ̃2 is released as well. The κ % connector
specifies that the key name κ is released.

Joining relations is done by the operator join (A1,A2)
which combines the information from A1 and A2. The op-
erator fresh (A, τ) takes a dependency relation A and a
primitive type τ and returns an extended type τ̃ that has the
same structure as τ , but the key names in it are fresh. This
operator may be used in the extended environment construc-
tion and in the typing rule for variable lookup.

Obtaining the results of the analysis is done via the func-
tions typeMay (A, τ̃) and typeMust (A, τ̃). These functions
cast the extended type τ̃ to a primitive type taking into ac-
count all possible (resp. definite) key dependencies in A.

Given an environment E = (M, G, R), a dependency
relation A, and an extended typing environment Γ̃, we say
that A enforces E, denoted by A, Γ̃ |= E, when for all key
names that occur in Γ̃ the following holds:

1. If the analysis returns that a key name may not have
been released, then key values in the memory environ-
ment associated with that name are not in the set of all
released keys

2. If the analysis returns that a key name must have been
released, then key values in the memory environment
associated with that name are in the set of all released
keys.

Our demands on the analysis implementation can be ex-
pressed as follows:

10

(T-VAR)

Γ̃(x) = τ̃1 τ̃ ′ : fresh (A,Γ(x))
A′ = upd (A, ~τ ′ 1, ~τ ′ → ~τ1, ~τ1 → ~τ ′)

A, Γ̃ ` x : τ̃ ′,A′

(T-ENC1)

A, Γ̃ ` e1 : key κ,A1 A1, Γ̃ ` e2 : τ̃ ,A2

typeMay (A1, key κ) = key HK
A3 = upd (A2, key κ → ~τ)

A, Γ̃ ` encryptHK (e1, e2) : encκ τ̃ L,A3

(T-ENC2)

A, Γ̃ ` e1 : key κ,A1 A1, Γ̃ ` e2 : τ̃ ,A2

typeMay (A1, key κ) = key γ γ 6= HK
lvl(τ̃) = σ A3 = upd (A2, key κ → ~τ)

A, Γ̃ ` encryptγ (e1, e2) : encκ τ̃ σ,A3

(T-DEC1)

A, Γ̃ ` e1 : key κ1,A1

A1, Γ̃ ` e2 : encκ2 τ̃ σ,A2

typeMust (A1, key κ1) = key γ

A, Γ̃ ` decryptγ (e1, e2) : τ̃σ,A2

(T-DEC2)

A, Γ̃ ` e1 : key κ1,A1

A1, Γ̃ ` e2 : encκ2 τ̃ σ,A2

typeMust (A1, key κ1) = key RK
typeMust (A2, key κ2) = key RK

A, Γ̃ ` decryptRK (e1, e2) : tolow(τ̃)σ
,A2

Figure 8. Selected type rules for expressions

A, Γ̃, pc ` c ⇒ A′ ∧ A, Γ̃ |= E ∧

〈E, c〉
~̀

−→∗ E′ =⇒ A′, Γ̃ |= E′

Expression typing rules The rules for expressions have
the form A, Γ̃ ` e : τ,A′, where A′ tracks dependencies
created by the expression e. Figure 8 presents the rules
for non-standard expressions, while the other rules can be
found in [5].

The rule for variable lookup (T-VAR) looks up the type
of the variable in the extended environment and creates a
fresh type in the dependency relation that is connected to
the original variable. The two rules for encryption corre-
spond to encryption with high non-released keys, and to
encryption with keys that have low or released levels. In
the first case, the rule (T-ENC1) allows the resulting type
of the expression to have the low type L, if it is known that
the key name used for encryption is definitely not released.
The second rule (T-ENC2) preserves the original level of
the plaintext σ; it uses the function lvl(·) that returns the

(T-SKIP)
A, Γ̃, pc ` skip⇒ A

(T-ASGN)

Γ̃(x) = τ̃ A, Γ̃ ` e : τ̃ ′,A′
pc v lvl(Γ(x)) typeMay (A′, τ̃ ′) <: Γ(x)

typeMust (A′, τ̃ ′) <: Γ(x)
A′′ = upd (A′, ~τ 1, ~τ → ~τ ′, ~τ ′ → ~τ)

A, Γ̃, pc ` x := e ⇒ A′′

(T-SEQ)
A, Γ̃, pc ` c1 ⇒ A′ A′, Γ̃, pc ` c2 ⇒ A′′′

A, Γ̃, pc ` c1; c2 ⇒ A′′

(T-IF)

A, Γ̃ ` e : int σ,A′
A′, Γ̃, pc t σ ` ci ⇒ A′i i = 1, 2

A, Γ̃, pc ` if e then c1 else c2 ⇒ join (A′1,A′2)

(T-WHILE)

join (A,A′′), Γ̃ ` e : int σ,A′
A′, Γ̃, pc t σ ` c ⇒ A′′

A, Γ̃, pc ` while e do c ⇒ join (A′,A′′)

(T-NEWKEY)

Γ(x) = key γ γ 6= RK Γ̃(x) = τ̃
A′ = upd (A, ~τ 1) pc v lvl(Γ(x))

A, Γ̃, pc ` newkey(x, γ) ⇒ A′

(T-RELEASE)

A, Γ̃ ` e : key κ,A′ pc = L
A′′ = upd (A′, κ %)

A, Γ̃, pc ` release(e) ⇒ A′′

Figure 9. Type rules for commands

security level of its argument:

lvl(t σ) = σ lvl((τ1, τ2)) = lvl(τ1) t lvl(τ2)
lvl(key HK) = H lvl(key LK) = L lvl(key RK) = L

Both rules update the dependency relations with informa-
tion that the release of the ciphertext is now dependent on
the release of the encryption key. The rules for decryption
require that the level of the key used for decryption matches
the key level of the encrypted value. The result of decryp-
tion is tainted by the security level of the encrypted value,
where the taint function is defined as follows:

(t σ)σ′ = t (σ t σ′) (τ1, τ2)σ = (τσ
1 , τσ

2)
(key LK)L = key LK (key RK)L = key RK
(key HK)σ = key HK

The interesting case, which uses the must analysis, is the
rule (T-DEC2) that relaxes the returning value if both en-
cryption and decryption keys are known to be released.

Command typing rules Figure 9 presents the command
type rules. The rules for a command c have the form
A, Γ̃, pc ` c ⇒ A′ where A and A′ are the dependency
relations before and after executing c.

11

Figure 10. Enforcement for high keys

The rule for assignment (T-ASGN) looks up the type of
the variable in both normal and extended environments. It
evaluates the type of the expression to assign in the extended
environment and its may and must types, as recorded in the
dependency relation. We require both of these types to be
a subtype of the variable type. Next, we update the depen-
dency relation with the new dependency between extended
types. As is standard, the rule also checks that the pc label
is bounded by the security level of the assigned variable.

The rule (T-SEQ) propagates the updated dependencies
through sequential composition. The rule for condition-
als (T-IF) evaluates the security level of the guard to check
both branches; the resulting dependency relation is obtained
by joining the resulting relations for c1 and c2. In a similar
flavor, the rule (T-WHILE) demands that there exists a pair
of dependency relations A′ and A′′ such that we can type
the loop body in an environment starting from A′ and pro-
ducing A′′. In addition, A′ is a result of evaluating loop
guard in an environment obtained by joining A and A′′.

The rule (T-NEWKEY) for new key generation checks
that the pc label is no greater than the level of the key to
generate. It looks up the extended type of the key variable in
the extended environment and removes dependencies of this
type in the dependency relation. The rule (T-RELEASE) is
the one where key names are marked as released. It also
enforces that release only happens in low context (under low
pc).

Figure 10 demonstrates the key-related part of enforce-
ment of the type system for high keys. The type system
tracks the state in a simple automaton for each key name
and rejects the program if its (statically approximated) exe-
cution paths might lead to a transition that is not prescribed
by the automaton.

Soundness We denote by A0 dependency relations that
contain no released-key names. The type system provably
enforces gradual release for the enriched language:

Theorem 2. If A0, Γ̃, pc ` c ⇒ A′ then c satisfies gradual
release.

6 Examples

This section provides examples of secure programming
in the context of media distribution, mental poker, and bit
commitment.

Media distribution In this example we consider the sce-
nario of media distribution. Large media is distributed in
encrypted form prior to the official release date. On the date
of release, secret keys are supplied to the consumers.

This protocol can be implemented in our language as fol-
lows:
1 // local var declarations
2 key HK k;
3 int H media;
4 enc HK (int H) L outMedia;
5 key RK outK;
6
7 // generating new key
8 k := newkey (HK);
9 media := . . .;

10 // publishing the low value of the media
11 outMedia := encryptHK(k,media);
12 ...
13 release(k); // releasing the key
14 outK := k;

The media is distributed via variable outMedia, whose type
enc HK (int H) L says that it stores low data which results
from encrypting high data with high keys. At the media
release time, the high key is released and published in the
variable outK, whose type says that it stores released keys.
This program is typable by the type system from Section 5
and, thus, is secure.

Note that premature key release is prevented by the type
system. For example, if the lines

release(k);
outMedia := encryptHK(k,media);

are moved ahead of the encryption, then the program will
be rejected as insecure.

Mental poker A pattern similar to media distribution is
used in mental poker [35, 9, 4] protocols. Encryptions dur-
ing the game correspond to card shuffling without trusted
third party. At the end of the game, there is a verification
phase to verify that no player was cheating. As with the
fragment above, the type system guarantees that keys may
not be released before the game phase is over.

Bit commitment using symmetric cryptography Bit
commitment is a common building block in security proto-
cols. We are primarily concerned with the confidentiality of
the committed bit for our purposes. In a typical run between
two principals, one of the principals commits its bid by en-
crypting a tuple consisting of the bid and a random value
obtained from the other principal. The tuple is encrypted
using a fresh key, which is later released in the revelation

12

phase. The following listing shows an example implemen-
tation of the protocol for the committing principal.
1 // local var declarations
2 int L rnd;
3 key HK k;
4 enc HK <int L, int S> L outCommit;
5 int H bit;
6 key RK outK;
7
8 // step 1: receive random value
9 rnd := ...;

10
11 k := newkey(HK); // step 2: commit and send
12 outCommit := encryptHK(k, <rnd, bit>);
13 ...
14 release (k); // step 3: release and send the key
15 outK := k;

The comments in the program connect the protocol steps to
the code. This program, too, is typable by the type system
from Section 5 and, thus, is secure.

To see how premature key release attacks are stopped,
observe that the type system prevents from confusing steps
2 and 3 in the protocol implementation. The type system
guarantees that no encryption with a released key may take
place.

7 Related work

Much recent and ongoing work on language-based infor-
mation security concerns policies for declassification. How-
ever, many policies tend to emphasize only some of the
what, who, where, and when dimensions of declassification,
leaving the other dimensions vulnerable for attacks [34].
As mentioned in Section 1, it is striking that these ap-
proaches (an overview of which can be found in [34]) fall
into two mostly separate categories: revelation-based and
encryption-based declassification.

Compared to other approaches to declassification, the
distinctive features of gradual release include a transparent
underlying semantic guarantee (the intuition of what is as-
sured is clear), its scalability to rich policies (which include
encryption and key release), and its practical enforcement.

The need for key release policies is motivated by a men-
tal poker case study [4], where an important phase of the
protocol is based on key revelation and verification that the
participants were not cheating during the game.

Gradual release is inspired by work on deducible infor-
mation flow [13] (which builds on earlier work [41, 25]
on possibilistic security) that characterizes noninterference-
like policies for abstract event systems in terms of what
secret events can be deducible from public output events.
Deducible information flow, however, has not been investi-
gated in the context of information release (apart from sim-
ple partial flows) or language-based security.

A logic-based approach to representing attackers’
knowledge about system events has been investigated
in [19]. This approach is based on Sutherland’s nonde-

ducibility [36] Similarly to these approaches, we do not
consider user strategies [40, 30] that can infer additional
knowledge.

Our starting point in modeling information flow in
the presence of encryption is cryptographically-masked
flows [3]. In the present work, we recast cryptographically-
masked flows in terms of small-step semantics, which is
needed for sensitivity as to when keys are released.

Secrecy by typing [1] offers a type system for enforcing
secrecy for a calculus that models cryptographic protocols.
The assumption is that the attacker may not decrypt cipher-
texts encrypted with secret keys. Key release and general
declassification policies are, however, not considered.

Cryptographic types [15, 11] facilitate access-control en-
forcement in a distributed programming language. How-
ever, they provide no information-flow guarantees.

Noninterference modulo trusted functions [20] is based
on the indistinguishability of program segments that are free
of trusted cryptographic functions. In the spirit of intransi-
tive noninterference [31], noninterference modulo trusted
functions is a where declassification policy that does not
provide guarantees for traces with declassification events.

Examples of when and where definitions that do not
address cryptographic primitives are noninterference “un-
til” [10], intransitive downgrading [27], non-disclosure [2],
flow locks [8], and WHERE [26]. Noninterference “un-
til” ignores the remainder of a trace once a declassification
has happened. The other definitions rely on attacker mod-
els that are stronger than necessary [34]: wrapping release
statements by downgrading commands [27, 26], flow dec-
larations [2] or flow locks [8] would pose stronger require-
ments on security than gradual release because they demand
security in the presence of state resetting (cf. Section 2).

Secrecy despite compromise [18] explores the problem
of compromised principals within π-calculi, where secure
channels can be modeled via shared secret keys, and com-
promised principals correspond to released keys. This
work, however, only tracks a limited form of information
flow: explicit flows.

Relative secrecy discusses release policies associated
with particular primitives: releasing the result of matching
a query to a secret password [38] and releasing the result of
computing a one-way function [37]. The underlying guar-
antee is that the attacker cannot learn the secret in polyno-
mial time in the size of the secret by running a program that
satisfies relative secrecy.

A notable line of work [22, 21, 23] deals with computa-
tional guarantees for languages with statically distinguished
keys. Computational attacker models have been also inves-
tigated in the context of π calculus [24, 28]. No general
declassification policies are supported by these approaches.

Declassification policies based on intransitive noninter-
ference have been explored for reactive systems [6]. A dis-

13

tinguishing feature of this work is the possibility of compu-
tational characterization of data declassification. While our
goal (of having a practically enforceable security condition
at the programming-language level) is initially different, we
share the ultimate goal of considering computational adver-
saries with [6] (see the future work).

8 Conclusion

We have presented gradual release, a framework for uni-
fying declassification, encryption, and key release policies.

Contributions The benefits of the framework include the
following:

• Policy-perimeter defense The framework is the first to
provide assurance for policies that include all of de-
classification, encryption, and key release;

• Connection between revelation-based and encryption-
based declassification Not only does the framework
combine revelation-based and encryption-based poli-
cies, but also formally connects the two kinds of de-
classification: gradual release for revelation-based de-
classification can be represented by a reassuringly sim-
ple encryption-based declassification: declassifying an
expression corresponds to encrypting the expression
with a fresh key and immediately releasing the key. In
this light, the framework is the first to unify revelation-
based and encryption-based declassification policies.

• Conservativity We have shown that gradual release
for programs with no declassification or encryption is
equivalent to a form of noninterference; in addition,
we have shown that gradual release with no key re-
lease (but possibly with encryption) is equivalent to a
form of possibilistic noninterference; and

• Type-based enforcement We have demonstrated that
gradual release can be enforced by type and effect sys-
tems.

Future work While gradual release emphasizes the
where dimension of information release it only offers a rel-
ative (to the previous point of release) assurance as to what
data is released. As sketched in Section 2, it is possible to
fully integrate the what dimension by connecting each re-
lease point to a policy that regulates what can be leaked.

The benefit of cryptographic and key-release primitives
is truly realized in a distributed setting. A natural extension
of our language is one with actors that run concurrently and
interact with each other by sending and receiving messages

on declared channels. While we can build on the message-
passing enabled language [3] for which cryptographically-
masked flows were introduced, we cannot directly reuse its
security model because it considers actors in isolation. In
presence of key release, it is not sufficient to view the actors
independently because a key release by one actor may affect
other actors. Thus, a goal for future work in this direction is
to reason about whole-system security. In general, this in-
volves reasoning about information flows due to blocking,
scheduling, races, and other flows that may arise in concur-
rent systems (cf. [32]).

Although not in the scope of this paper, a high-priority
direction for work on cryptographically-masked flows (with
and without key release) is showing that semantic security
under chosen plaintext attack (SEM-CPA) [17] (i.e., what-
ever is efficiently computable about the cleartext given the
ciphertext, is also efficiently computable without the ci-
phertext) with an appropriate message authentication code
(e.g., INT-PTXT [7]) for the underlying cryptographic prim-
itives is sufficient for the semantic security of programs
(with ample restrictions on key cycles) that satisfy the con-
dition of cryptographically-masked flows.

Acknowledgments

We wish to thank Daniel Hedin and David Sands for
helpful discussions on an earlier draft of this paper. This
work was funded in part by the Sixth Framework pro-
gramme of the European Community under the MOBIUS
project FP6-015905, in part by VINNOVA, and in part by
the Swedish Research Council.

References

[1] M. Abadi. Secrecy by typing in security protocols. J. ACM,
46(5):749–786, Sept. 1999.

[2] A. Almeida Matos and G. Boudol. On declassification and
the non-disclosure policy. In Proc. IEEE Computer Security
Foundations Workshop, pages 226–240, June 2005.

[3] A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-
masked flows. In Proc. Symp. on Static Analysis, LNCS,
pages 353–369. Springer-Verlag, Aug. 2006.

[4] A. Askarov and A. Sabelfeld. Security-typed languages for
implementation of cryptographic protocols: A case study. In
Proc. European Symp. on Research in Computer Security,
volume 3679 of LNCS, pages 197–221. Springer-Verlag,
Sept. 2005.

[5] A. Askarov and A. Sabelfeld. Gradual release: Unifying de-
classification, encryption and key release policies. Technical
report, Chalmers University of Technology, 2007. Located
at http://www.cs.chalmers.se/∼aaskarov/sp07full.pdf.

[6] M. Backes and B. Pfitzmann. Intransitive non-interference
for cryptographic purposes. In Proc. IEEE Symp. on Security
and Privacy, pages 140–153, May 2003.

14

[7] M. Bellare and C. Namprempre. Authenticated encryption:
Relations among notions and analysis of the generic com-
position paradigm. In Advances in Cryptology - Asiacrypt
2000, volume 1976 of LNCS, pages 531–545, Jan. 2000.

[8] N. Broberg and D. Sands. Flow locks: Towards a core cal-
culus for dynamic flow policies. In Proc. European Symp.
on Programming, volume 3924 of LNCS, pages 180–196.
Springer-Verlag, 2006.

[9] J. Castellà-Roca, J. Domingo-Ferrer, A. Riera, and J. Bor-
rell. Practical mental poker without a TTP based on homo-
morphic encryption. In Progress in Cryptology-Indocrypt,
volume 2904 of LNCS, pages 280–294. Springer-Verlag,
Dec. 2003.

[10] S. Chong and A. C. Myers. Security policies for downgrad-
ing. In ACM Conference on Computer and Communications
Security, pages 198–209, Oct. 2004.

[11] T. Chothia, D. Duggan, and J. Vitek. Type-based distributed
access control. In Proc. IEEE Computer Security Founda-
tions Workshop, pages 170–186, 2003.

[12] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. Comm. of the ACM, 20(7):504–
513, July 1977.

[13] C. Dima, C. Enea, and R. Gramatovici. Nondeterministic
nointerference and deducible information flow. Technical
Report 2006-01, University of Paris 12, LACL, 2006.

[14] D. Dolev and A. Yao. On the security of public-key proto-
cols. IEEE Transactions on Information Theory, 2(29):198–
208, Aug. 1983.

[15] D. Duggan. Cryptographic types. In Proc. IEEE Computer
Security Foundations Workshop, pages 238–252, June 2002.

[16] J. A. Goguen and J. Meseguer. Security policies and security
models. In Proc. IEEE Symp. on Security and Privacy, pages
11–20, Apr. 1982.

[17] S. Goldwasser and S. Micali. Probabilistic encryption. Jour-
nal of Computer and System Sciences, 28:270–299, 1984.

[18] A. Gordon and A. Jeffrey. Secrecy despite compromise:
Types, cryptography, and the pi-calculus. In Proc. CON-
CUR’05, number 3653 in LNCS, pages 186–201. Springer-
Verlag, Aug. 2005.

[19] J. Halpern and K. O’Neill. Secrecy in multi-agent systems.
In Proc. IEEE Computer Security Foundations Workshop,
pages 32–46, June 2002.

[20] B. Hicks, D. King, P. McDaniel, and M. Hicks. Trusted
declassification: High-level policy for a security-typed lan-
guage. In Proc. ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security, June 2006.

[21] P. Laud. Semantics and program analysis of computationally
secure information flow. In Proc. European Symp. on Pro-
gramming, volume 2028 of LNCS, pages 77–91. Springer-
Verlag, Apr. 2001.

[22] P. Laud. Handling encryption in an analysis for secure in-
formation flow. In Proc. European Symp. on Programming,
volume 2618 of LNCS, pages 159–173. Springer-Verlag,
Apr. 2003.

[23] P. Laud and V. Vene. A type system for computationally
secure information flow. In Proc. Fundamentals of Compu-
tation Theory, volume 3623 of LNCS, pages 365–377, Aug.
2005.

[24] P. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. A
probabilistic poly-time framework for protocol analysis. In
ACM Conference on Computer and Communications Secu-
rity, pages 112–121, Nov. 1998.

[25] H. Mantel. Possibilistic definitions of security – An assem-
bly kit –. In Proc. IEEE Computer Security Foundations
Workshop, pages 185–199, July 2000.

[26] H. Mantel and A. Reinhard. Controlling the what and where
of declassification in language-based security. In Proc. Eu-
ropean Symp. on Programming, LNCS. Springer-Verlag,
2007.

[27] H. Mantel and D. Sands. Controlled downgrading based on
intransitive (non)interference. In Proc. Asian Symp. on Pro-
gramming Languages and Systems, volume 3302 of LNCS,
pages 129–145. Springer-Verlag, Nov. 2004.

[28] J. C. Mitchell. Probabilistic polynomial-time process cal-
culus and security protocol analysis. In Proc. European
Symp. on Programming, volume 2028 of LNCS, pages 23–
29. Springer-Verlag, Apr. 2001.

[29] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing
robust declassification and qualified robustness. J. Computer
Security, 14(2):157–196, May 2006.

[30] K. O’Neill, M. Clarkson, and S. Chong. Information-flow
security for interactive programs. In Proc. IEEE Computer
Security Foundations Workshop, pages 190–201, July 2006.

[31] J. M. Rushby. Noninterference, transitivity, and channel-
control security policies. Technical Report CSL-92-02, SRI
International, 1992.

[32] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE J. Selected Areas in Communications,
21(1):5–19, Jan. 2003.

[33] A. Sabelfeld and A. C. Myers. A model for delimited in-
formation release. In Proc. International Symp. on Software
Security (ISSS’03), volume 3233 of LNCS, pages 174–191.
Springer-Verlag, Oct. 2004.

[34] A. Sabelfeld and D. Sands. Declassification: Dimensions
and principles. J. Computer Security, 2007. To appear.

[35] A. Shamir, R. Rivest, and L. Adleman. Mental poker. Math-
ematical Gardner, pages 37–43, 1981.

[36] D. Sutherland. A model of information. In Proc. National
Computer Security Conference, pages 175–183, Sept. 1986.

[37] D. Volpano. Secure introduction of one-way functions.
In Proc. IEEE Computer Security Foundations Workshop,
pages 246–254, July 2000.

[38] D. Volpano and G. Smith. Verifying secrets and relative se-
crecy. In Proc. ACM Symp. on Principles of Programming
Languages, pages 268–276, Jan. 2000.

[39] D. Volpano, G. Smith, and C. Irvine. A sound type system
for secure flow analysis. J. Computer Security, 4(3):167–
187, 1996.

[40] J. T. Wittbold and D. M. Johnson. Information flow in non-
deterministic systems. In Proc. IEEE Symp. on Security and
Privacy, pages 144–161, 1990.

[41] A. Zakinthinos and E. S. Lee. A general theory of security
properties. In Proc. IEEE Symp. on Security and Privacy,
pages 94–102, May 1997.

[42] S. Zdancewic. Challenges for information-flow security. In
Proc. Programming Language Interference and Dependence
(PLID), Aug. 2004.

15

