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Abstract—In systems that handle confidential information,
the security policy to enforce on information frequently
changes: new users join the system, old users leave, and
sensitivity of data changes over time. It is challenging, yet
important, to specify what it means for such systems to be
secure, and to gain assurance that a system is secure.

We present a language-based model for specifying, reasoning
about, and enforcing information security in systems that
dynamically change the security policy. We specify security for
such systems as a simple and intuitive extensional knowledge-
based semantic condition: an attacker can only learn informa-
tion in accordance with the current security policy.

Importantly, the semantic condition is parameterized by
the ability of the attacker. Learning is about change in
knowledge, and an observation that allows one attacker to
learn confidential information may provide a different attacker
with no new information. A program that is secure against an
attacker with perfect recall may not be secure against a more
realistic, weaker, attacker.

We introduce a compositional model of attackers that sim-
plifies enforcement of security, and demonstrate that standard
information-flow control mechanisms, such as security-type
systems and information-flow monitors, can be easily adapted
to enforce security for a broad and useful class of attackers.

I. INTRODUCTION

Given the wealth of confidential information handled by
many different computer systems, it is important to ensure
that systems enforce appropriate security on the information
that they manipulate. But what constitutes “appropriate
security” changes over time, even during a single execution
of the system: users join the system and can now view
confidential information; users leave the system and are
no longer allowed to view confidential information; the
sensitivity of data changes over time, affecting the set of
users that can view the data.

In the presence of such dynamic changes to the desired
security policy, it is challenging to specify what it means
for a system to be secure, let alone to gain assurance that a
system correctly enforces security. Previous approaches that
aim to provide strong information security either ignore the
dynamic nature of security policies in their security guar-
antee (e.g., [32, 33]), or introduce complex and unintuitive
definitions of security and/or use non-standard enforcement
mechanisms (e.g., [7, 17, 34]).

We present a language-based model for specifying, rea-
soning about, and enforcing information security in systems
that dynamically change the security policy. Our seman-
tic security condition is simple, intuitive, extensional, and

defined in terms of an attacker’s knowledge: an attacker
that can observe program execution should learn information
only in accordance with the current security policy.

Importantly, the semantic security condition is parame-
terized on the abilities of the attacker. Knowledge-based
semantic security conditions are intended to restrict what
and when an attacker learns information. Learning is about
change in knowledge, and so we must consider how the
knowledge of an attacker changes as it makes observations.
In many practical scenarios, the perfect recall attacker is
too strong. An observation that gives a weak attacker new
information may be “old news” for a strong attacker with
perfect recall. We enforce our semantic security condition
for a broad and practical set of attackers using straight-
forward adaptations of standard information-flow security
mechanisms (e.g., [4, 28]).

We regard a security policy v as a relation over a set
L of security levels. Intuitively, security policies specify
what information flows are permitted between security lev-
els. Policies must be reflexive, and may be (but are not
required to be) partial orders or lattices. Policies can encode
information-flow lattices [12] and intransitive relations such
as those used for intransitive noninterference [23, 35]. We
assume that the set of security levels L is fixed, but allow
the policy to change during program execution.

Motivating scenario. Consider a company’s document-
management system that is accessible by all of the com-
pany’s employees. It contains many documents, some of
which are sensitive, meaning that only certain employees
may use them. As an employee joins or leaves the company,
or is promoted or transferred, the set of documents that
the employee may access changes. The information security
policy for this document-management system specifies who
may use which documents, and it changes over time. Indeed,
the security policy itself is part of the state of the system,
and part of the system’s functionality is the ability for some
users to modify the security policy.

Even a relatively simple document-management system
can reveal information about documents in unexpected ways.
For example, suppose the documents are indexed to facilitate
search. Because the index contains information about key-
words that appear in sensitive documents, the index contains
sensitive information: if a user is given unrestricted access
to the index, the user may learn confidential information she
is not permitted to learn. Traditional access control mecha-



nisms would not suffice to enforce the desired security, since
a user may learn information about documents through the
index without ever attempting to access the document.

We thus seek to enforce strong information security,
defined in terms of the knowledge of agents interacting with
the system. The definition of security, and the enforcement of
it, is complicated by the dynamic nature of security policies.
However, our definition is simple and intuitive: an agent that
observes program execution should learn information only
if permitted by the current security policy.

The following program allows user U to learn about
documents classified as Nuclear (that is, changes the current
security policy v so that (Nuclear , U) ∈ v), and outputs
the keywords of document nuke1 to user U . (We assume that
the indexing functionality of the system can determine the
keywords of a document, and the keywords of a document
reveal information about the document’s content.) The pro-
gram then removes permission for U to learn about Nuclear
documents (that is, changes the current security policy v so
that (Nuclear , U) 6∈ v, perhaps due to U being reassigned
to a different department), and outputs the keywords of
document nuke2 to U . Both documents are classified as
Nuclear.

P1 : Allow info flow from Nuclear to U
Output keywords(nuke1) to U

Disallow info flow from Nuclear to U
Output keywords(nuke2) to U

This program is insecure, in that user U learns information
about document nuke2 at a time when the security policy
does not allow it. User U also learns about document nuke1,
but does so when the security policy permits it.

Attacker model. Consider the following code, that outputs
confidential information to user U at a time when U is
permitted to learn the information, and the same information
again at a time when U is not permitted.

P2 : Allow info flow from Nuclear to U
Output keywords(nuke1) to U
. . .
Disallow info flow from Nuclear to U
Output keywords(nuke1) to U

Should this program be regarded as secure or not? At the
first output, U learns information about document nuke1. If
U is a powerful attacker who remembers the first output,
then when the confidential information is output again, U
learns nothing new. From our description of the security
condition, this program is secure: the attacker learns in-
formation only in accordance with the currently enforced
policy. However, intuitively, we would like to regard this
program as insecure: it outputs information about nuke1 to
U at a time when this is not permitted. Indeed, for a more
realistic attacker, who may not remember every output it
has observed, the last output may enable the attacker to learn

information about nuke1 at a time when this isn’t permitted.
A suitable definition of security should permit us to reject

both programs P1 and P2, even though one of them is secure
against a powerful attacker. We therefore parameterize our
definition of security with respect to an attacker: a program
is secure against attacker A if A learns information only in
accordance with the current security policy.

Security thus depends on the ability of the attacker. Rather
than being an artifact of our technical development, we
believe that this is a fundamental and important notion. Our
intuitions about information security revolve around the idea
of restricting what an attacker is permitted to learn. Learning
is about change in knowledge: an attacker learns something
from an event if the attacker’s knowledge after the event is
more precise than the attacker’s knowledge before. In the
presence of dynamic security policies, it is not sufficient
to simply consider the most powerful possible attacker: we
must also consider changes in the knowledge of weaker,
more realistic, attackers.

Ideally we would like to ensure that a program is secure
against as many attackers as possible. However, it may not
be possible to be secure against all possible attackers (as
we will discuss later). This begs the question “which set of
attackers we should strive to ensure security against?”

We develop a compositional theory of attackers that gives
insight into the security condition, and simplifies enforce-
ment. Specifically, we show that there is a class of simple
attackers that are easy to reason about, and if a program is
secure against this class of simple attackers then the program
is secure against many other attackers, including logically-
omniscient attackers with perfect recall, and with bounded
memory. This compositional theory both enables reasoning
about the security of programs, and simplifies enforcement.

Contributions. This work makes three key contributions.
• We present a novel semantic security condition

suitable for dynamic security policies. The secu-
rity condition is intuitive, extensional, and knowledge-
based, and is suitable for a language that permits
arbitrary changes to the security policy. The semantic
security condition is parameterized on an attacker, and
a program may be secure against a powerful attacker
and insecure against a weaker attacker.

• We present both static and dynamic techniques
to enforce this semantic security condition. These
techniques elegantly extend existing information-flow
control techniques to handle dynamic security policies
in a language that can be extended with expressive
security-relevant features.

• We introduce a compositional model of attackers,
which simplifies both the security condition and the
enforcement mechanisms. We prove that enforcing
security for a simple and intuitive class of attackers
implies security for a much broader class of attackers.
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Values v ::= n
Expressions e ::= v | x | e1 ⊕ e2
Commands c ::= skip | x := e | c1; c2

| if e then c1 else c2 | while e do c
| inputx from ` | output e to `
| setPolicy(v)

Figure 1. Language syntax

II. LANGUAGE

We present a simple imperative interactive language that
contains an explicit command for changing the current
security policy. The language can perform input and output
on channels. We assume that there is one channel for each
security level in L. Our semantic security conditions will
be concerned with protecting the confidentiality of inputs
received on channels.

Syntax. Figure 1 presents the language syntax. Language
commands are standard, with the exception of input and
output commands, and command setPolicy(v), which sets
the current security policy to v. We do not specify how se-
curity policies are denoted, but assume that some mechanism
exists. In later sections, we will extend the language to allow
security policies to be specified using language mechanisms.
Input command inputx from ` receives an input from chan-
nel ` and assigns the value to variable x. Output command
output e to ` evaluates expression e and outputs the resulting
value on channel `.

Expressions e consist of program variables x, values v,
and binary operations over expressions. We use ⊕ to range
over total binary relations over values. For simplicity, we
restrict values to integers n.

Semantics. A memory is a function from program variables
to values. We use metavariable m to range over memories.

An input stream is a sequence of values representing
the pending inputs on a channel. We use metavariable vs
to range over input streams, and write v : vs for the
input stream with first element v, and remaining elements
vs. An input environment is a function from L to input
streams. Metavariable w ranges over input environments.
For input environment w and security level ` ∈ L, w(`)
is the input stream for channel `. Note that, because our
language is deterministic, it is sufficient to model input
via streams—Clark and Hunt show that, for deterministic
programs, quantification over all streams expresses arbitrary
interactive input strategy [11].

A configuration is a tuple 〈c,m,w,v〉 consisting of
command c, memory m, input environment w, and security
policy v. Command c is the remainder of the program
to execute, m is the current memory, w is the current
input environment, and v is the current security policy.
Figure 2 presents an operational semantics for the language.
Judgment 〈c,m,w,v〉 −→α 〈c′,m′, w′,v′〉means that con-
figuration 〈c,m,w,v〉 can take a single step to configuration
〈c′,m′, w′,v′〉, optionally emitting an event α. Events are

m(e) = v

〈x := e,m,w,v〉 −→ε 〈skip,m[x 7→ v], w,v〉

〈c1,m,w,v〉 −→α 〈c′1,m′, w′,v′〉
〈c1; c2,m,w,v〉 −→α 〈c′1; c2,m

′, w′,v′〉

〈skip; c,m,w,v〉 −→ε 〈c,m,w,v〉

m(e) 6= 0

〈if e then c1 else c2,m,w,v〉 −→ε 〈c1,m,w,v〉

m(e) = 0

〈if e then c1 else c2,m,w,v〉 −→ε 〈c2,m,w,v〉

〈while e do c,m,w,v〉 −→ε

〈if e then (c; while e do c) else skip,m,w,v〉

〈setPolicy(v′),m,w,v〉 −→ε 〈skip,m,w,v′〉

w(`) = v : vs

〈inputx from `,m,w,v〉 −→i(v,`)

〈skip,m[x 7→ v], w[` 7→ vs],v〉

m(e) = v

〈output e to `,m,w,v〉 −→o(v,`) 〈skip,m,w,v〉

Figure 2. Language semantics

either input events i(v, `) or output events o(v, `), indicating,
respectively, the input or output of value v on channel `. We
use α = ε to indicate that no event was emitted during the
execution step. We use E to denote the set of all possible
events, and E(`) to denote the set of possible events on
channel `.
E(`) = {i(v, `) | v is a value} ∪ {o(v, `) | v is a value}

E =
⋃
`∈L

E(`)

We write m(e) = v to indicate that expression e evaluates
to value v using memory m to look up the value of program
variables. We write m[x 7→ v] for the memory that maps
program variable x to value v and otherwise behaves the
same as memory m. Similarly, we write w[` 7→ vs] for the
input environment that maps channel ` to input stream vs
and otherwise behaves the same as w.

The inference rules for the semantics are mostly standard.
Command setPolicy(v) modifies the configuration to make
policy v the current policy. Input command inputx from `
inputs value v from input stream w(`), updates the memory
to map x to v, updates the input environment to remove
v from input stream w(`), and emits event i(v, `). Output
command output e to ` evaluates e to value v, and emits
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event o(v, `).
We assume that there is a distinguished memory minit

and a distinguished security policy vinit that are used as
the initial memory and security policy, respectively, for any
program execution. For concreteness, we assume in the rest
of the paper that the initial security policy is the identity
relation over security levels: vinit = vId = {(`, `) | ` ∈ L}.

Our semantic security conditions will be concerned with
the confidentiality of initial input environments. As such,
there is no distinguished initial input environment.

Traces. Traces are finite sequences of events. We use
metavariable t to range over traces, and write t1 · t2 for the
concatenation of traces t1 and t2. We write ε for the empty
trace (and also use it to denote the absence of an event in
an execution step). We write |t| for the length of trace t.

We write t � ` for the restriction of trace t to events on
channel `. More formally, we have

ε�` = ε

(α · t)�` =

{
α · (t�`) if α ∈ E(`)

t�` if α 6∈ E(`).

We say that configuration 〈c0,m0, w0,v0〉 emits
trace t on channel ` ending with policy vk (written
〈c0,m0, w0,v0〉 ⇓` (t,vk)) if there are k+1 configurations
〈ci,mi, wi,vi〉 for i ∈ 0..k such that

〈ci−1,mi−1, wi−1,vi−1〉 −→αi 〈ci,mi, wi,vi〉
for all i ∈ 1..k, and t = (α1 · . . . ·αk)�`, and t 6= (α1 · . . . ·
αk−1)�`.

Intuitively, if 〈c,minit , w,vinit〉 ⇓` (t,v) then an ob-
server of channel ` may observe trace t during the execution
of command c with initial input environment w, and policy
v is the policy enforced when the last event of t was emitted.

III. SECURITY

We define security of a program in terms of the knowledge
of an attacker that observes program execution. Conceptu-
ally, the definition of security is straightforward: an execu-
tion of a program is secure if an attacker learns information
about the initial input environment only in accordance with
the current security policy.

In this section, we define attackers as entities that observe
the execution of a program, and define the knowledge of an
attacker. We then state two versions of the semantic security
condition and explore some of the consequences.

A. Attackers and attacker knowledge

As discussed in the introduction, a program may be secure
against a powerful attacker, but insecure against a weaker
attacker. We thus define attackers, and will parameterize
our definition of security with respect to the attacker that
is observing program execution.

An attacker is a state-based machine that observes a
subset of events during a program’s execution, and updates

its state accordingly. We assume that all attackers know the
source code of the program generating the events, and that
attackers are logically omniscient. Attackers differ in their
ability to remember the observations they have made. We
will define the attacker’s knowledge to be the set of initial
input environments that could have resulted in a sequence
of observations that caused the attacker to be in its current
state.

Formally, attacker A is a tuple A = (SA, sinit , δA) where

• SA is a set of attacker states;
• sinit ∈ SA is the initial attacker state; and
• δA : SA × E → SA is the transition function that

describes how the attacker’s state changes due to events
the attacker observes. Note that δA is a function, and
so state transitions are deterministic.

Given trace t and attacker A = (SA, sinit , δA), we write
A(t) to denote the attacker’s state after observing trace t.

A(ε) = sinit

A(t · α) = δA(A(t), α)

We assume that attacker A is able to observe only events on
a single channel, and refer to that channel as the level of A.

Note while this is not uncommon in literature [27], this
is different from conventional approaches where attacker
observes events from all channels `′ such that `′v`. In our
case, the choice is more than a matter of preference—the
conventional definition would be unsuitable because of the
dynamic nature of v.

Example attackers. We give four examples of attackers that
will be of later interest. The “perfect attacker” APer has
perfect recall: it remembers all observations. The set of states
for APer is the set of traces. The attacker’s initial state is
the empty trace, and the transition function concatenates the
latest observable event to the attacker’s state: δAPer

(s, α) =
s·α. The perfect attacker knows more than any other attacker
(which will be stated and proved later).

A significantly weaker class of attackers are “bounded
memory” attackers, Alast-i , that remember the last i ob-
served events (and the total number of events observed).
More formally, the set of attacker states is the set of pairs
of natural numbers (counting the number of observations),
and traces of up to length i. The initial state is the pair (0, ε),
and the transition function is defined as δAlast-i ((j, t), α) =
(j + 1, t′) where t′ is equal to the last k events of t · α,
where k is the minimum of i and the length of t · α.

Another class of attackers that will be of interest are the
“i-th event only” attackers Ai-only which simply count the
number of observed events, and remember only the ith event.
More formally, the set of attacker states is the set of pairs of
natural numbers (counting the number of observations), and,
optionally, events (recording the ith event): SAi-only = N×E.
The initial state is (0, ε). The transition function is defined
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as follows.

δAi-only ((j, α), α′) =

{
(i, α′) if j + 1 = i

(j + 1, α) otherwise

An even weaker attacker is the “no memory” attacker A∅
who has only a single state sinit , and thus pays no attention
to any observations: δA∅(sinit , α) = sinit .

Attacker knowledge. Given program c, we define the
knowledge of attacker A with current state s and level `
to be the set of initial input environments that could have
resulted in the attacker’s current state by observing execution
of command c. We write k(c, A, `, s) for the attacker’s
knowledge, and define it as follows.

k(c, A, `, s) = {w | ∃t. 〈c,minit , w,vinit〉 ⇓` (t,v)

and A(t) = s}
Intuitively, the set k(c, A, `, s) is the set of initial input

environments that attacker A with state s believes are
possible. Thus, a smaller set means that the attacker has
better, or more precise, knowledge.

The perfect attacker APer has the most precise knowledge
out of any possible attacker, since APer remembers all
observable events.

Theorem 1. Let A = (SA, sinit , δA) be an attacker. Then
for all commands c, all security levels `, all initial input envi-
ronments w, and all traces t such that 〈c,minit , w,vinit〉 ⇓`
(t,v) we have

k(c, A, `, A(t)) ⊇ k(c, APer , `, APer (t)).

Proofs of this and other theorems are available in the
accompanying technical report [2]

B. Security definition

Our definition of security is, intuitively, that the attacker
learns information only in accordance with the current
security policy. Since we are interested in protecting the
initial input environment, we need to define what the attacker
is permitted to learn about the initial input environment.
Towards this end, we define an equivalence relation over
input environments: `-equivalence according to v, written
≈v` . Two input environments are related to each other by ≈v`
if the two input environments have identical input streams
for all security levels `′ that are permitted to flow to level `
according to policy v. Intuitively, if w ≈v` w′ then policy
v would not allow an attacker with level ` to distinguish
the input environments w and w′. More formally,

w ≈v` w′ ⇐⇒ ∀`′.(`′, `) ∈ v ⇒ w(`′) = w′(`′).

We write [w]v` to denote the equivalence class of w under
relation ≈v` .

Given this interpretation of how security policies are
intended to restrict attacker knowledge of initial input envi-
ronments, we can now state the definition of security.

Definition 1 (Security for input environment w). Command
c is secure against attacker A = (SA, sinit , δA) with level `
for initial input environment w if for all traces t, events α,
and policies v such that 〈c,minit , w,vinit〉 ⇓` ((t · α),v)
we have

k(c, A, `, A(t · α)) ⊇ k(c, A, `, A(t)) ∩ [w]v` .

Security requires that, for each observation α that the at-
tacker makes, the attacker’s new knowledge—k(c, A, `, A(t ·
α)), the left-hand side of the equation—is no more precise
than the combination of the attacker’s previous knowledge
and the knowledge about the initial input environment al-
lowed by the current policy—k(c, A, `, A(t)) ∩ [w]v` , the
right-hand side of the equation.

C. Security against attackers

The definition of security depends on the knowledge of
the attacker. Thus, different programs will be secure against
different attackers. For example, consider the following
program, P3, a version of the pseudocode program from the
introduction. There are three security levels L = {A,B,C},
policy vAB→C allows information flow from level A to C
and from level B to C, and vB→C allows information flow
from B to C, but not from A to C.

P3 : vAB→C= vId ∪ {(A,C), (B,C)}
vB→C = vId ∪ {(B,C)}

input a fromA;
input b fromB;
setPolicy(vAB→C);
output a+ b toC;
setPolicy(vB→C);
output b toC

This program reads inputs from channels A and B, stores
them in variables a and b, sets the policy to vAB→C , and
outputs a+ b to channel C. It then sets the policy to vB→C
and outputs variable b to channel C. It is secure against the
“no memory” attacker A∅ with any level `. Indeed, every
program is secure against A∅, since the knowledge of A∅
never changes.

All executions of P3 are secure against APer with level C.
Consider an execution with APer observing channel C. The
attacker observes the sum a + b, say 12. At this point in
the execution, the attacker’s knowledge is the set of all
initial input environments w such that the first elements
of input streams w(A) and w(B) sum to 12. This change
in knowledge is permitted by the current security policy
vAB→C which allows the attacker to learn anything and
everything about the initial input streams w(A) and w(B)
(since (A,C) ∈ vAB→C and (B,C) ∈ vAB→C).

The attacker next observes the value of variable b, say 7.
The attacker’s knowledge has improved: it now knows the
exact values for the first elements of input streams w(A)
and w(B). The current security policy is vB→C . Clearly
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the attacker has learned the first element of the initial input
stream w(B), which is permitted by policy vB→C . But
the attacker has also learned the first element of the initial
input stream w(A), which is not permitted by the policy.
Nonetheless, the execution is secure, since the attacker’s
new knowledge is no more precise than what may be
obtained by combining the attacker’s previous knowledge
with information it is permitted to learn according to the
current security policy.

Security against the perfect attacker APer does not imply
security against all attackers. Consider program P4 below,
which differs from P3 only in the final command, which
outputs variable a to channel C instead of b.

P4 : input a fromA;
input b fromB;
setPolicy(vAB→C);
output a+ b toC;
setPolicy(vB→C);
output a toC

During execution of P4, the knowledge of APer is identi-
cal to the knowledge of APer during an execution of P3.
Thus, program P4 is secure against APer with attacker
level C. But intuitively the program is insecure! It outputs
variable a to channel C even though the current security
policy does not allow information flow from A to C.

Indeed, this program is insecure against attacker A2 -only
with level C, which remembers only the second observed
event and whose knowledge suddenly improves from the set
of all possible initial input environments to only those input
environments where the first element of input stream w(A)
matches the observed output.

Although security against perfect attacker APer does
not imply security against all attackers, security against
some attackers does imply security against other attackers.
Specifically, given some some set of attackers {Aj}j∈J , if
a program is secure against Aj for all j ∈ J , then the
program is also secure against an attacker that combines
the knowledge of all Aj . That is, the program is also secure
against an attacker whose knowledge equals the intersection
of the knowledge of Aj for all j ∈ J .

Theorem 2. Let {Aj}j∈J be a set of attackers, and for all
j ∈ J , let c be secure against attacker Aj with level `. Let
A be an attacker such that for all initial input environments
w and traces t such that 〈c,minit , w,vinit〉 ⇓` (t,v) we
have

k(c, A, `, A(t)) =
⋂
j∈J

k(c, Aj , `, Aj(t)).

Then c is secure against attacker A with level `.

Theorem 2 implies that if a program is secure against
Ai-only with level ` for all possible values of i, then c is
secure against many other attackers with level `, including

vH→A= vId ∪ {(H,A)}

inputx fromH;
setPolicy(vH→A);
output (x > 0 ? 1 : 2) toA;
setPolicy(vId);
output 3 toA

sinit

s1 s2

o(3, A)
o(2, A)

o(1, A)

o(3, A)

Figure 3. Example program and attacker Ainsec

the perfect attacker APer , and all bounded memory attackers
Alast-j for all j.

Theorem 3. For all commands c, if for all i, c is secure
against Ai-only with level `, then c is secure against attacker
APer with level `.

Theorem 4. For all commands c, if for all i, c is secure
against Ai-only with level `, then for all j, c is secure against
attacker Alast-j with level `.

These results (Theorems 2, 3, and 4) simplify both secu-
rity reasoning and security enforcement. It allows both a sys-
tem developer and an enforcement mechanism to consider
the security of a program just with respect to attacker Ai-only
for all i: a set of simple attackers that are easy to understand.
Security against attackers Ai-only will imply security for a
large and practical set of attackers.

However, security against all Ai-only does not imply
security against all attackers. For example, Figure 3 shows
a program and an attacker Ainsec such that the program is
secure against Ai-only with level ` for all possible values
of i, but is insecure against Ainsec . In an execution where
the input from H is positive, then once Ainsec observes the
output o(3, A), the attacker learns that the input was positive
at a time when it is not permitted to learn this information.
Intuitively, this is because the attacker’s state machine does
not record that it saw the event o(1, A), which would let it
learn that the input was positive at an appropriate time.

Attacker Ainsec is, in some ways, being willfully stupid:
it remembers observing the value 2 (by transitioning to
state s2) but ignores observing the value 1. It is not an
attacker for which we particularly care whether our system
is secure against. By contrast, we believe that the attackers
APer and Alast-i are a useful, relevant, and realistic set of
attackers, for which it is reasonable to ensure a system is
secure against. Thus, enforcing security against Ai-only is
a worthwhile endeavor, even if it does not imply security
against all attackers.

Characterizing such “willfully stupid” attackers is future
work, as is the identification of a definitive class of attackers
against which programs should be secure.

D. Progress-insensitive security

The definition of security given in Definition 1 is progress
sensitive [4]: it accounts for knowledge the attacker may gain
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by observing progress of program execution. For example,
consider the following program.

P5 : output 0 toL;
inputx fromH;
while x > 0 do skip;
output 1 toL

An attacker observing channel L sees the second output
event if and only if the while loop terminates. Since the loop
guard depends on an input from channel H (which policy
vinit does not allow to be learned by an observer of channel
L), program P5 is insecure according to Definition 1.

However, many practical enforcement techniques ignore
information flow via the observation of progress, and enforce
a definition of security that allows attackers to learn arbitrary
information by observing progress. We present a progress in-
sensitive version of the security definition to enable standard
enforcement techniques. Indeed, the enforcement techniques
we present in Section V enforce progress-insensitive secu-
rity, defined below.

We define progress knowledge [4] as the set of initial input
environments that could have led to the attacker’s current
state s, and can produce another event observable by the
attacker (which may or may not change the attacker’s state).

k+(c, A, `, s) = {w | ∃t. ∃α ∈ E(`).

〈c,minit , w,vinit〉 ⇓` ((t · α),v) and A(t) = s}

Progress knowledge is more precise than the attacker’s
knowledge, in that for all commands c, attackers A, attacker
levels `, and attacker states s, we have k(c, A, `, s) ⊇
k+(c, A, `, s).

We modify our previous definition of security to progress-
insensitive security, which allows the attacker to learn that
the program makes progress. That is, the attacker knowledge
at each step is no more precise than the combination of the
attacker’s previous knowledge, the information the current
security policy allows to be learned, and the knowledge that
the program makes progress. The definition of progress-
insensitive security differs from the definition of progress-
sensitive security (Definition 1) only in the replacement of
k(c, A, `, A(t)) with k+(c, A, `, A(t)).

Definition 2 (Progress-insensitive security for input envi-
ronment w). Command c is progress-insensitively secure
against attacker A = (SA, sinit , δA) with level ` for initial
input environment w if for all traces t, events α, and
policies v such that 〈c,minit , w,vinit〉 ⇓` ((t · α),v) we
have

k(c, A, `, A(t · α)) ⊇ k+(c, A, `, A(t)) ∩ [w]v` .

As with progress-sensitive security, the left-hand side of
the equation is the attacker’s new knowledge, and the right-
hand side of the equation provides a bound on how precise
the attacker’s knowledge is allowed to be.

Program P5 satisfies progress-insensitive security (Defini-
tion 2) against APer with level L for all input environments,
but does not satisfy progress-sensitive security (Definition 1)
against APer with level L for an initial input environment w
where the first element of w(H) is not positive.

The results of this section (specifically, Theorems 2, 3 and
4) hold for both progress-insensitive and progress-sensitive
security.

E. Noninterference, declassification, and revocation

Noninterference [15] is a semantic security condition that
requires that “high security” events do not interfere with, or
affect, “low security” events. While there are many defini-
tions of noninterference, most relevant here are knowledge-
based definitions for interactive models (e.g., [4, 5, 10]).

The definitions of security, both progress sensitive and
progress insensitive, generalize noninterference. More pre-
cisely, if the security policy never changes from the initial
security policy, then progress-(in)sensitive security implies
progress-(in)sensitive noninterference [3, 4].

Declassification weakens noninterference, to allow some
high-security information to be observed by low-security
observers. There are at least two ways that declassification
can be viewed or incorporated into our model. First, if the
security policy changes from v to v′, where v′ ⊇ v,
then the new security policy allows more information flows.
This can be viewed as a coarse-grained form of declassi-
fication, since previously disallowed information flows are
now permitted. Second, finer-grained policies, described in
Section VI, can be added into our model to allow partial
flows between security levels.

Revocation occurs when security privileges are removed.
In our model this corresponds to removing a flow that was
previously allowed. Our security conditions allow previous
knowledge of the attacker to persist, but allows new knowl-
edge to be acquired only in accordance with the current
security policy.

IV. FIRST-CLASS SECURITY POLICIES

Systems with dynamic security policies typically have a
run-time representation of the security policy. For example,
in a document management system that attempts to restrict
which users may use which documents, users’ permissions
would be represented in a data structure, and the data
structure examined and modified at runtime.

In this section, we extend our language to encode security
policies at run time, which allows the program to inspect and
manipulate security policies. The extension simplifies our
semantics, requires no changes to the security definitions
of Section III, and does not require complex enforcement
mechanisms.

We encode the security policy in memory using a subset
of the program variables. Let Λ be a function from L × L
to variables, so that variable Λ(`, `′) encodes whether the
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current security policy allows information flow from ` to `′.
For brevity, we write Λ`,`′ to denote variable Λ(`, `′). Flow
is permitted from ` to `′ if either ` = `′ (since policies must
be reflexive) or the current memory maps variable Λ`,`′ to
a non-zero value. Given memory m, we write vm for the
security policy represented by m, defined as follows.

Definition 3 (Interpretation of the security policies vm).
vm = {(`, `′) | ` = `′ ∨m(Λ`,`′) 6= 0}

The program may modify the current security policy by
updating the variables Λ`,`′ . Thus, the encoding removes
the need for a specialized syntax for policy changes, and
setPolicy(v) can now be dropped from the language syn-
tax. Moreover, the program can perform run-time tests to
determine whether information flow is permitted from ` to
`′ simply by inspecting variable Λ`,`′ .

Program configurations 〈c,m,w,v〉 no longer need to
explicitly represent the current security policy v, since
it can be inferred from the current memory. Of course,
given a semantics over configurations 〈c,m,w〉 that do not
explicitly represent the current security policy, we can lift
the semantics to those of Section II, and can thus carry over
the security definitions of Section III with no modifications.

Consider the following example program where com-
munication occurs between a server, abbreviated to S
and a client, abbreviated to C, until the server chooses
to terminate communication. This program satisfies both
progress-sensitive and progress-insensitive security for at-
tacker Ai-only with any level for all i.

P6 : ΛC,S := 1; ΛS,C := 1;
input y fromS;
while ΛS,C 6= 0 do

inputx fromC;
outputx > y toC;
input t fromS;
output t toC;
ΛS,C := t;

output 0 toC

The first line of this program establishes a security policy
in which information can flow from C to S, and vice-
versa. The first input reads variable y from S. In the
body of the loop, we input values from C into variable x.
Because information can flow from S to C, the result of
the expression x > y can also flow to C, and therefore
the corresponding output statement is allowed. We input
variable t from S, and use that value to update the security
policy, possibly disallowing flow from S to C. However,
before updating the security policy (ΛS,C := t) we output
the value of t to C, so that C learns whether the security
policy will change. This notification is needed; otherwise,
when C observes the output of 0 at the end of the program,
C would learn information about inputs from S at a time
when it is not allowed by the current security policy.

As another example, suppose user U wants to upload
content to web server W . Moreover, the server decides
whether the user is allowed to upload content. Program P7

models this scenario.
P7 : ΛW,U := 1;

input ΛU,W fromW ;
if ΛU,W 6= 0 then

input file fromU ; output file toW
else

skip

This program is both progress-sensitively and progress-
insensitively secure against attacker Ai-only with any level
for all i. Variable ΛU,W is updated based on input from W .
The conditional statement checks whether flow is allowed
from U to W before transferring the file. This program is
secure, because the upload occurs only when the information
flow is permitted by the current security policy.

V. ENFORCEMENT

Sections III and IV present an expressive language and
knowledge-based security conditions. The security condi-
tions describe permitted information flow in the presence
of dynamic security policies, even when the security policy
is derived from runtime constructs of the program.

In this section we present both static and dynamic enforce-
ment techniques for progress-insensitive security against
attacker Ai-only with any level, for all i. By the results of
Section III, this implies progress-insensitive security against
many other attackers, including the perfect attacker APer

and all bounded memory attackers Alast-j . Progress-sensitive
security can be enforced by more restrictive variations of
these enforcement techniques (e.g., [4, 27]).

Our enforcement techniques are adapted from existing
information-flow control mechanisms. Like previous work,
we track information flow using a security lattice [12].
However, we use the powerset of security levels to track
information flow, and check that information flows conform
to the current enforced security policy only at program
locations that generate observable events.

The absence of an event on a channel may reveal informa-
tion to an observer. To control this information flow in the
presence of dynamic security policies, we introduce a novel
mechanism—channel context bounds—that tracks bounds on
information flows arising from decisions to produce events
on channels, a form of implicit information flow [12].

We note that, apart from channel context bounds, the en-
forcement mechanisms described in this section are largely
standard. Soundness of these mechanisms is, nevertheless,
an important contribution because it shows that dynamic
security policies can be enforced using known techniques.
Throughout the section we point out to a range of extensions
that can improve accuracy of these techniques.
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Γ,∆, pc ` skip

pc ∪ Γ(e) ⊆ Γ(x)

Γ,∆, pc ` x := e

Γ,∆, pc ` ci, i = 1, 2

Γ,∆, pc ` c1; c2

Γ,∆, pc ∪ Γ(e) ` ci, i = 1, 2

Γ,∆, pc ` if e then c1 else c2

Γ,∆, pc ∪ Γ(e) ` c

Γ,∆, pc ` while e do c

pc ∪ {`} ⊆ Γ(x) pc ⊆ ∆(`)

∀`′ ∈ ∆(`). may-flow(`′, `)

Γ,∆, pc ` inputx from `

pc ⊆ ∆(`) ∀`′ ∈ ∆(`) ∪ Γ(e). may-flow(`′, `)

Γ,∆, pc ` output e to `

Figure 4. Typing rules

A. Static enforcement

We present a type system that enforces security for Ai-only
with any level, for all i. The type system is a mostly
standard information-flow control security-type system (e.g.,
[28, 36]). A security-type context Γ is a function from
program variables to sets of security levels. Intuitively, if the
value of program variable x at any point in the program’s
execution may reveal information about the initial input
stream for channel `, then ` ∈ Γ(x). We introduce channel
context bounds ∆ that map channels to sets of security
levels, and for each channel provide an upper bound on
decisions to produce an observable event on that channel.
Intuitively, if a decision to produce an input or output on
channel ` may reveal information about the initial input
stream for channel `′, then `′ ∈ ∆(`).

Type judgment Γ,∆, pc ` c means that command c is
well-typed under security-type context Γ, channel context
bounds ∆, and program counter levels pc, which is a set of
security levels such that if information at level ` might have
influenced control flow reaching command c, then ` ∈ pc.
Program counter levels, in conjunction with channel context
bounds, control implicit information flows [12]: information
flow through the control flow structure of a program.

Inference rules for judgment Γ,∆, pc ` c are presented
in Figure 4. We write Γ(e) for the set of security levels of
variables occurring in e: Γ(e) = {Γ(x) | x appears in e}.
The rules are standard for security type systems except for
the use of channel context bounds and the use of sets of
security levels to track information flows. We explain these
differences in more detail below.
Powerset of security levels. We use sets of security levels
to track information flow instead of taking upper bounds
of security levels. This is because the security policy, which
provides an ordering over security levels, may change during
execution, and thus it is difficult to determine statically an
“upper bound” of a given set of security levels. By tracking
information flow using sets of security levels, we avoid need-
ing to commit to any particular security policy at the time
of analysis. At program points that may produce observable

events on channel ` (i.e., input and output commands), we
compute a set of security levels that is an upper bound on
the information that the event may reveal (∆(`) for input
statements, and ∆(`)∪Γ(e) for output statements). For every
security level `′ in the upper bound we check that `′ is
allowed to flow to level ` at that program point, using the
function may-flow(`′, `), described below.

Static approximation of runtime security policy. As in
security-type systems with dynamic security levels (e.g.,
[16, 17, 25, 34, 37]), we use a static analysis to track which
information flows are permitted at a given program point.
Instead of conflating this analysis with the type system,
we assume that this analysis is specified separately, and
the results of the analysis are available via the function
may-flow(`1, `2). Note that the analysis needs to be flow
sensitive, and we assume the function may-flow(`1, `2)
takes as an implicit argument the program point for which
we are querying the analysis results. This could be made
explicit by adding labels to all program points (e.g., [26]).
The static approximation of the runtime security policy is
used to check information flow only at observable events:
input and output commands. We assume that this analysis
is sound: at a given program point, for some security
levels `1 and `2, if may-flow(`1, `2) is true, then in any
execution, whenever that program point is reached, we have
(`1, `2) ∈ v, where v is the current security policy in
the configuration at the queried program point. Since the
policy is interpreted from the current memory, this implies
that the current value in variable Λ`1,`2 is non-zero. Thus,
the analysis could be implemented as a standard constant
propagation analysis.

Channel context bounds. We use channel context bounds
to track and control information flow arising from the
decision to perform an input or output. Channel context
bounds restrict the contexts in which channels may be used.
Consider the following program.

P8 : ΛA,B := 1;
inputx fromA;
if x > 0 then

output 1 toB
else skip;
ΛA,B := 0;
output 2 toB;

This program inputs a value from channel A, and, if that
value is positive, outputs 1 to channel B. Information flow
is then disallowed from A to B, and the value 2 is output
on channel B. Suppose that the first event an attacker with
level B sees is o(2, B). At that time, the attacker learns
that the input from A was not positive, and thus learns
information about A at a time when it is not permitted,
violating security. Observation of event o(2, B) informed
the attacker that event o(1, B) did not occur. We track this
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information flow using channel context bounds: ∆(`) is an
upper bound on the information that may be learned by the
occurrence or non-occurrence of any event on channel `. It
is a superset of the program counter levels at all input and
output events on that channel. The use of channel context
bounds in our type system ensures that insecure program P8

above does not type-check.

The type system enforces progress-insensitive security
against attacker Ai-only with any level, for all i.

Theorem 5 (Soundness of type system). For all commands
c, security levels `, and i ∈ N, if there exists a security-
type context Γ and a channel context bounds ∆ such that
Γ,∆, ∅ ` c then c is progress-insensitively secure against
attacker Ai-only with level ` for all input environments w.

For example, Program P5 (Section III-D) is well-typed
under security-type context Γ such that Γ(x) = {H}, and
thus progress-insensitively secure against attacker Ai-only
with any level, for all i. Similarly, Program P6 (Section IV)
is well-typed if Γ(y) = Γ(t) = {S}, Γ(x) = {R,S},
Γ(ΛR,S) = ∅, and Γ(ΛS,R) = {S}.

The type system presented here assumes a security-type
context Γ that describes the levels of information that may
be found in variables at any point in the program’s execution.
This context could be specified in advance, or could be
inferred using a standard type inference algorithm. The type
system could easily be adapted to a more precise flow-
sensitive security-type system [18, 19].

B. Dynamic enforcement

Dynamic information-flow monitors (e.g., [4, 13, 20])
control the flow of information in a system by monitoring
the system execution, and intervening when necessary. We
describe a purely dynamic information-flow monitor [30]
based closely on the monitor of Askarov and Sabelfeld [4].

To enforce progress-insensitive security, we need to define
configurations and inference rules for monitored execu-
tion of program. A monitored configuration has the form
(〈c,m,w〉, st), where 〈c,m,w〉 is a program configuration
(where the memory encodes the current security policy), and
st is a monitor state. A monitor state is a stack of sets
of security levels, and is used to track implicit information
flows. The monitor state is analogous to the program counter
levels pc used in the security-type system.

We extend our original program semantics to issue mon-
itor events to the monitor for assignments, branching, input
and output. The monitor can decide whether to accept or
reject a monitor event based on the current monitor state. A
monitored configuration makes a transition only when the
monitor event is accepted by the monitor. When the event
is not accepted, program execution halts. This extension
of the semantics follows the presentation of Askarov and
Sabelfeld [4]. We omit most of the details here, except the

⋃
st ⊆ ∆(`) (

⋃
st) ∪ {`} ⊆ Γ(x) ∀`′ ∈ ∆(`) . `′vm`

st −→i(x,`) st⋃
st ⊆ ∆(`) ∀`′ ∈ Γ(e) ∪∆(`) . `′vm`

st −→o(e,`) st

Figure 5. Dynamic enforcement of input and output

monitor rules for input and output monitor events, presented
in Figure 5, which describe when the monitor is prepared to
accept input and output monitor events.

As in the security-type system, we assume a security-
type context Γ and channel context bounds ∆. The monitor
ensures that Γ and ∆ are bounds on the information that
may be learned by examining the values of variables and
performing input and output. That is, a value that may reveal
information about the initial input stream w(`) may only be
stored in variable x if ` ∈ Γ(x). In Figure 5, we write⋃
st for the union of all elements of the stack st . Recall

that a stack element is a set of security levels. The set
⋃
st

describes which security levels could have influenced control
flow reaching the current program point.

Interestingly, to check whether information flow is permit-
ted from ` to `′, the monitor must inspect the current security
policy vm. Such inspection may reveal sensitive informa-
tion, since it depends on the value of variable Λ`,`′ , which
may reveal information about levels Γ(Λ`,`′). However, the
resulting information channel cannot be magnified [5].

In dynamic enforcement, unlike static enforcement, Γ
and ∆ need to be available at runtime. We call such
executions Γ,∆-monitored executions. This also requires
lifting the definitions of knowledge and progress knowledge
to be parameterized over Γ and ∆. Using these definitions
of knowledge it is straightforward to lift the definition
of progress-insensitive security to Γ,∆-monitored progress-
insensitive security.

Soundness of the dynamic enforcement states that moni-
tored executions satisfy the lifted progress-insensitive secu-
rity for attacker Ai-only with any level, for all i.

Theorem 6 (Soundness of dynamic enforcement). For
all commands c, security levels `, input environments w,
security-type contexts Γ, channels contexts bounds ∆, and
i ∈ N, it holds that Γ,∆-monitored executions of c is
progress-insensitively security against attacker Ai-only with
level ` for input environment w.

VI. EXTENSIONS

Our language-based model for information security in the
presence of dynamic security policies is simple, expressive,
and can be enforced using practical information-flow control
techniques. In this section we highlight the simplicity by
sketching two extensions to the model: the addition of first-
class security levels, and of fine-grained security policies.
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Values v ::= . . . | `
Expressions e ::= . . . | e1 flows-to e2
Commands c ::= . . . | inputx from e | output e1 to e2

Figure 6. Modified language syntax for first-class security levels

These security-relevant extensions require only little change
to the definitions of security and enforcement techniques.

A. First-class security levels

We add security levels as first-class values to the language,
and extend the type system of Section V-A to enforce
progress-insensitive security for this new language. This
increases the expressiveness of the language, bringing it
closer to realistic systems that represent and manipulate both
security levels and security policies at run time.

The addition of first-class security levels does not change
either the observational model or the definitions of security.
We believe that this supports our design choice in the
observational model and definitions of security: the addition
of a security-relevant language feature changes just the
enforcement mechanisms.

We extend the language to allow values to include security
levels ` ∈ L, and add expression e1 flows-to e2 to test
whether flow is permitted between levels. We extend input
and output commands to specify the channel using arbitrary
expressions. Figure 6 presents the modified syntax.

Language semantics remain the same, modulo extending
the set of values to include security levels, and changing
the evaluation of input and output commands to evaluate
the channel expression. Definitions of attacker knowledge,
progress knowledge, and progress-sensitive and progress-
insensitive security remain unchanged.

The following program demonstrates the increased expres-
siveness of the language. Provided the security policy allows
the appropriate flows, the program inputs a security level x
from A, reads a value from channel x, and echoes it to chan-
nel B. We assume that expression e1 flows-to e2 evaluates to
one if the current security policy permits information flow
from e1 to e2 and zero otherwise.

P9 : inputx fromA;
if A flows-tox then input y fromx else skip;
if (x flows-toB and A flows-toB) then

output y toB
else skip

This program satisfies progress-sensitive and progress-in-
sensitive security for attacker Ai-only with any level, for all i.
An attacker with level x upon observing the input event may
learn the first input from channel A. Thus, the program must
check that flow is permitted from A to x. An attacker with
level B upon observing the output event may learn both the
value input from x and that the first input from channel A
was x. Thus the program must check that flow is permitted
both from x to B and from A to B.

We can modify the type system of Section V-A to enforce
progress-insensitive security for the extended language. The
modified type system is described in Appendix A.

B. Fine-grained policies

The definitions of security and progress-insensitive se-
curity allow an attacker’s knowledge to improve only in
accordance with the current security policy. So far we have
considered only coarse-grained security policies v such that
if (`′, `) ∈ v then an attacker at security level ` is allowed to
learn everything about the initial input stream of channel `′.
This is expressed in the security conditions by the set [w]v`
of input environments that policy v does not allow an
attacker at security level ` to distinguish from the initial
input environment w.

It is natural and straightforward to consider information
flows at finer granularity. Equivalence relations over the
initial input environments provide a flexible and expressive
way of specifying what information an attacker is permitted
to learn [14, 31].

Let a fine-grained policy P = { ≈` }`∈L be a family
of equivalence relations over initial input environments,
indexed by ` ∈ L, and write [w]P` for the equivalence class
of input environment w under equivalence relation ≈` ∈ P .

Intuitively, fine-grained policy P describes for each secu-
rity level ` what information an observer at level ` is allowed
to learn. Fine-grained policies generalize security policies.

We modify language configurations to replace policies v
with fine-grained policies P , and assume there is some
distinguished fine-grained policy Pinit used as the initial
fine-grained policy for every execution.

The definition of security generalizes in the obvious way
for fine-grained security policies, where equivalence class
[w]P` is used to restrict how the knowledge of an attacker is
allowed to improve. We give the definition of fine-grained
progress-sensitive security below; the definition of fine-
grained progress-insensitive security is similar, except that
progress knowledge is used instead of attacker knowledge.

Definition 4 (Fine-grained progress-sensitive security).
Command c is fine-grained progress-sensitively secure
against attacker A = (SA, sinit , δA) with level ` for initial
input environment w if for all traces t, events α, and fine-
grained policies P such that

〈c,minit , w, Pinit〉 ⇓` ((t · α), P )

we have

k(c, A, `, A(t · α)) ⊇ k(c, A, `, A(t)) ∩ [w]P` .

Enforcement. There are existing enforcement mechanisms
for certain classes of fine-grained policies, such as security-
type systems (e.g., [29]) and information-flow monitors (e.g.,
[4, 21]). These mechanisms can be adapted to enforce fine-
grained progress-sensitive security by modifications similar
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to those described in Section V. To wit, checks that in-
formation flow conforms to policy should be performed at
the program locations that generate observable events, and
otherwise information flow should be tracked without any
assumptions as to which policy is currently enforced.

VII. RELATED WORK

Broberg and Sands define flow locks [7–9] which specify
conditions when information may flow between security
levels. A flow lock may be explicitly opened or closed by
a program, enabling or disabling information flow between
levels. As such, flow locks allow for the dynamic updating
of security policy. The semantic security condition for flow
locks is knowledge based and quantifies over attackers with
different observational abilities (which is analogous to our
quantification over output channels `). The type system is
of similar precision to ours. The key distinction between
flow locks and this work is the semantic security condition:
we consider security with respect to attackers with different
abilities, while the work on flow locks is only concerned
with perfect recall attackers. We believe that this is a
crucial step forward in knowledge-based semantic security
conditions. Such conditions are intended to restrict what an
attacker learns, and when. Since learning is about change
in knowledge, one must consider how the knowledge of
different attackers change with observations: an attacker
with perfect recall may not learn anything new from an
observation, but the same observation may allow a more
realistic weaker attacker to learn confidential information.

Hicks et al. [17] consider dynamic updating of
information-flow policies. They permit arbitrary updates to
the security policy, and introduce the semantic security
condition noninterference between updates, which requires
that the program satisfies a form of noninterference between
any two consecutive updates to the security policy. There is
no security guarantee across security updates. By contrast,
our semantic security condition provides a guarantee across
arbitrary updates. They enforce their security condition using
nonstandard mechanisms, including permission tags, a form
of type coercion between security levels that are inserted
into execution only in accordance with the current policy,
but may be reduced at any time. By contrast, our choice
of observational model and security condition allows us to
use simple adaptations of standard information-flow control
mechanisms to enforce security. We adapt the enforcement
mechanisms to delay checking of permitted information
flows until the production of observable events.

The RX programming language [34], by Swamy et al.,
extends the policy update work of Hicks et al. [17] to
make it more practical. They represent security policies
using owned roles, derived from the RT role-based trust-
management frameworks [22]. They identify the problem of
transitive flows, which inadvertently allow information flows
that are permitted by neither the old nor new policy. They

prevent transitive flows by using a transactional mechanism
to ensure that if the security of a program fragment depends
upon flow allowed by the current security policy, then those
portions of the current security policy are not modified
until the fragment finishes execution. Our static enforce-
ment mechanism does not exhibit any transitive flows, but
a transactional mechanism would potentially enable the
may-flow(·, ·) analysis to be more precise.

RX uses metapolicies to control information that may be
revealed through policy updates. This is needed because
policies are not first class in RX. Our model does not
require metapolicies since the program is able to query
and manipulate the security policy using standard program
constructs (see Section IV). This justifies our design choice
of cleanly separating the run-time behavior of the language
from security policies: the definition of security and the se-
mantics of security policies depend on the run-time behavior
of programs, but not vice versa.

The Jif programming language [25] represents security
principals at run time, and allows security principals to
dynamically delegate their authority to other principals.
Since delegation between security principals defines the
security policy, Jif allows dynamic security updates. Broberg
and Sands [9] encode Jif’s Decentralized Label Model [24]
in flow locks, and thus provide a semantic security condition
for Jif. We believe that this work, provides a promising
alternative approach to modeling Jif’s run-time representa-
tion of security principals, and providing a semantic security
condition for Jif that includes reasoning about the different
abilities of different principals.

As discussed in Section III-E, dynamically updatable
security policies can enable a coarse-grained form of de-
classification, in which all flows between two security levels
are permitted (possibly temporarily) after being previously
disallowed. Other work has considered coarse-grained de-
classification. Mantel and Sands [23] present a language in
which a more permissive security policy is used when con-
trol flow is within a downgrading command. Their semantic
security condition is bisimulation-based, and the intuition is
that in each step, information flows according to the current
security policy. Almeida Matos and Boudol [1] also present
a language where lexical scope enables more flows with
a bisimulation-based security condition. Information flow
from security level A to security level B is allowed within
the scope of a flow A ≺ B in c command.

Balliu et al. [6] point out to the connection of the set-
based definitions of attacker knowledge (that our definition
is an instance of) to the epistemic account of knowledge.
We believe that our intuition on security in the presence
of dynamic policies also applies to when information flow
policies are expressed using temporal epistemic logic; formal
development of such result may provide for an interesting
and fruitful future research direction.
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VIII. CONCLUSION

We have presented a simple, elegant, and extensible
model for reasoning about information security in the pres-
ence of dynamic security policies. We use an extensional
knowledge-based semantic security condition, which can
be enforced using adaptations of standard information-flow
control techniques, in a language that permits arbitrary
changes to the security policy.

The semantic security condition is straightforward and
intuitive: an attacker should learn information only in accor-
dance with the current security policy. The semantic security
condition is parameterized on an attacker, and a program
may be secure for a powerful attacker, yet insecure for
a weaker attacker. We identify a class of simple attackers
such that if a program is secure against all members of this
class, the program is secure against many more attackers,
including the most powerful possible attacker, and attackers
with bounded memory. We present mechanisms that enforce
security for this class of simple attackers, and thus also
enforce security for a useful and realistic set of attackers.

The language can be easily extended with expressive
security-relevant features, such as run-time representation
of the security policy, first-class security levels, and fine-
grained security policies, without significant change to the
semantic security condition.

We believe that this language-based model provides a
promising platform on which to build practical systems with
strong information security guarantees.
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APPENDIX

A. Static enforcement for first-class security levels
We modify the type system of Section V-A to enforce

progress-insensitive security for the extended language. The
codomain of security-type contexts Γ is now labeled types
τS where τ ∈ {int, lev} indicates whether the variable
contains integer values or security levels, and S is a set of
expressions. Intuitively, if Γ(x) = τS and at some point in
the program’s execution, the value of variable x may reveal
information about the initial input stream of the security
level that expression e evaluates to, then e ∈ S.

Typing rules for the new type system are presented in
Figure 7. Judgment Γ,∆, pc `dep c means that command c
is well-typed under security-type context Γ, channel context
bounds ∆, and program counter levels pc. Program counter
levels and the codomain of channel context bounds are
now sets of expressions instead of sets of security levels.
Intuitively, if information at the security level to which e
evaluates might influence control flow reaching command
c, then e ∈ pc, and if information at the security level to
which e evaluates to might influence whether an input or
output event occurs on channel `, then e ∈ ∆(`).
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Γ,∆, pc `dep skip

Γ,∆, pc `dep c1
Γ,∆, pc `dep c2

Γ,∆, pc `dep c1; c2

Γ(x) = τS
Γ(e) = τS′

pc ∪ S′ ⊆ S
Γ,∆, pc `dep x := e

Γ(e) = intS
Γ,∆, pc ∪ S `dep c1
Γ,∆, pc ∪ S `dep c2

Γ,∆, pc `dep if e then c1 else c2

Γ(e) = intS Γ,∆, pc ∪ S `dep c

Γ,∆, pc `dep while e do c

Γ(x) = τS Γ(e) = levS′ pc ∪ {e} ∪ S′ ⊆ S
∀` ∈ values(e). pc ⊆ ∆(`)

∀` ∈ values(e). ∀e′ ∈ ∆(`) ∪ S′.
∀`′ ∈ all -values(e′). may-flow(`′, `)

Γ,∆, pc `dep inputx from e

Γ(e1) = τS1
Γ(e2) = levS2

∀` ∈ values(e2). pc ⊆ ∆(`)
∀` ∈ values(e2). ∀e′ ∈ ∆(`) ∪ S1 ∪ S2.

∀`′ ∈ all -values(e′). may-flow(`′, `)

Γ,∆, pc `dep output e1 to e2

Figure 7. Typing rules for dependent type system

The type system is very similar to that presented in
Section V-A. The typing rules for if and while commands
now check that the guard evaluates to an integer value.
Otherwise, the only significant changes are to the rules for
input and output.

Consider the rule for input command inputx from e. The
value that will be stored in x may reveal that the command
was executed, and so the typing rule ensures that the pro-
gram counter levels pc are a subset of S, the levels for x. In
addition, the value to be stored in x will reveal information
about the input stream of channel e, and so the rule requires
e ∈ S. Also, the evaluation of e may reveal information,
and so the rule requires S′ ⊆ S, where S′ is the set of level
expressions for e. The channel context bounds must be an
upper bound for the decision to perform any input or output,
and so for all security levels ` ∈ values(e), we must have
pc ⊆ ∆(`), where values(e) is a conservative approximation
of possible security levels that e could evaluate to at this pro-
gram point. Finally, an observer of channel e observes that
an input event occurred, potentially allowing the observer
to infer both that the command executed, and the value of
expression e. Thus, for all ` ∈ values(e), all e′ ∈ ∆` ∪ S′
and all `′ ∈ all -values(e′), flow must be allowed from `′

to `, where all -values(e′) is a conservative approximation
of possible security levels that e could evaluate to at any
program point.

Note that while we consider possible evaluations of ex-
pression e at just the queried program point (values(e)),
we must consider possible evaluations of expressions e′ at
any point in the program’s execution (all -values(e′)), since
expressions e′ are taken from type information, and the type
system is flow insensitive.

Execution of an output command output e1 to e2 reveals
information to an observer of channel e2, including that
the command executed, the value of both expression e1
and e2. The typing rule for output commands requires that
that may-flow(`′, `) is true for all ` ∈ values(e2), all
e′ ∈ ∆` ∪ S1 ∪ S2 and all `′ ∈ all -values(e′).

The modified type system enforces security for the ex-
tended language.

Theorem 7. For all commands c, security levels `, and i ∈
N, if there exists a security-type context Γ and a channel
context bound ∆ such that Γ,∆, ∅ `dep c then c is progress-
insensitively secure against attacker Ai-only with level `.

The proof of Theorem 7 is similar in structure to the proof
of Theorem 5.

Program P9 is well-typed under a security-type context
Γ such that Γ(x) = {A} and Γ(y) = {x,A}, and
provided may-flow(A, x) evaluates to true at command
input y fromx, and may-flow(x,B) and may-flow(A,B)
both evaluate to true at the output command.
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