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Abstract
We propose a new language-based approach to mitigating timing
channels. In this language, well-typed programs provably leak only
a bounded amount of information over time through external tim-
ing channels. By incorporating mechanisms for predictive mitiga-
tion of timing channels, this approach also permits a more expres-
sive programming model. Timing channels arising from interaction
with underlying hardware features such as instruction caches are
controlled. Assumptions about the underlying hardware are explic-
itly formalized, supporting the design of hardware that efficiently
controls timing channels. One such hardware design is modeled and
used to show that timing channels can be controlled in some simple
programs of real-world significance.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Formal Methods; D.4.6 [Security and protection]:
Information Flow Controls

General Terms Languages, Security

Keywords Timing channels, mitigation, information flow

1. Introduction
Timing channels have long been a difficult and important problem
for computer security. They can be used by adversaries as side chan-
nels or as covert channels to learn private information, including
cryptographic keys and passwords [8, 13, 14, 18, 22, 24, 29, 36].

Timing channels can be categorized as internal or external [28].
Internal timing channels exist when timing channels are converted
to storage channels within a system and affect the results computed.
External timing channels exist when the adversary can learn some-
thing from the time at which the system interacts with the outside
world. In either case, confidential information transmitted through
timing channels constitutes timing leakage.

Internal timing channels that exploit races between threads have
been addressed by enforcing low determinism [16, 37] and by con-
straining thread scheduling [26, 28]. The focus of this paper is in-
stead on controlling external timing channels, for which current
methods are less satisfactory. Starting with Agat [3], program trans-
formations have been proposed to remove external timing channels.
However, these methods restrict expressiveness: for example, loop
guards can depend only on public information. Further, they do not
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handle some realistic hardware features. External mitigation is an-
other approach to control external timing channels, by quantitatively
limiting how much information leaks via the timing of external in-
teractions [5, 20, 38]. Since external mitigation treats computation
as a black box, it cannot distinguish between benign timing varia-
tions and variations that leak information. When most timing varia-
tion is benign, this leads to a significant performance penalty.

This work introduces a more complete and effective language-
based method for controlling external timing channels, with prov-
ably bounded leakage. Broadly, the new method improves control
of external timing channels in three ways:

• Unlike methods based on code transformation [3], this method
supports more realistic programs and hardware. For example, it
can be implemented on hardware with an instruction cache.

• Another difference from code-transformation approaches is that
it offers a fully expressive programming model; in particular,
loops with high (confidential) guards are permitted.

• The method does not need to be as conservative as external tim-
ing mitigation because a program analysis can distinguish be-
tween benign timing variations and those carrying confidential
information, and can distinguish between multiple distinct se-
curity levels. This fine-grained reasoning about timing channels
improves the tradeoff between security and performance.

Timing channels arise in general from the interaction of pro-
grams with the underlying implementation of the language in which
the programs are written. This language implementation includes
not only the compiler or interpreter used, but also the underlying
hardware. Reasoning accurately about timing channels purely at the
source language level is essentially impossible because language se-
mantics, by design, prevent precise reasoning about time.

An important contribution of this paper is therefore a system
of simple, static annotations that provides just enough information
about the underlying language implementation to enable accurate
reasoning about timing channels. These annotations form a contract
between the software (language) level and the hardware implemen-
tation.

A second contribution of this paper is a formalization of this
contract. Using this formal contract, implementers may verify that
their compiler and architecture designs control timing channels. We
illustrate this by sketching the design of a simple memory cache
architecture that avoids timing channels.

A third contribution is a new language mechanism that improves
expressive power achievable while controlling timing channels. It
uses predictive timing mitigation [5] to bound the amount of infor-
mation that leaks through timing. With this mechanism, algorithms
whose timing behavior does depend on confidential information can
be implemented securely; predictive mitigation ensures that total
timing leakage is bounded by a programmer-specified function.



To evaluate the correctness and effectiveness of our approach, we
simulated hardware satisfying the hardware side of the software–
hardware contract. We evaluate the use of our approach on two
applications vulnerable to timing attacks. The results suggest that
the combination of language-based mitigation and secure hardware
works well, with only modest slowdown.

We proceed as follows. Section 2 discusses the problem of con-
trolling timing channels on modern computer hardware, and gives
an overview of the new method. Section 3 introduces a program-
ming language designed to permit precise reasoning about timing
channels. Its semantics formalize several constraints that must be
satisfied by a secure implementation. Section 4 sketches how these
constraints can be satisfied by both stock and specialized hardware
implementations. A type system for the language that soundly con-
trols timing channels is presented in Section 5; its novel multilevel
quantitative security guarantees are explored in Section 6. Predictive
mitigation of timing channels is discussed in Section 7. Section 8
presents performance results from a simulated implementation of
language-based predictive mitigation. Related work is covered in
Section 9, and Section 10 concludes.

2. Language-level timing mitigation

Controlling timing channels is difficult because confidential infor-
mation can affect timing in many ways, and yet we want to be able
to analyze these timing dependencies at the source level. However,
language semantics do not and should not define timing precisely.

2.1 Timing dependencies
We call timing channels visible at the source-language level direct
timing dependencies. In this example, control flow affects timing.

1 if (h)
2 sleep(1);
3 else
4 sleep(10);
5 sleep(h);

Assume h holds confidential data and that
sleep (e) suspends execution of the pro-
gram for the amount of time specified by
e. Since line 4 takes longer to execute
than line 2, one bit of h is leaked through
timing. Attacks on RSA have also used
control-flow-related timing channels [8,

18]. Another source of direct timing dependencies is operations
whose execution time depends on parameter values, such as the
sleep command at line 5.

Modern hardware also creates indirect timing dependencies in
which execution time depends on hardware state that has no source-
level representation. The following code shows that the data cache
is one source of indirect dependencies.

1 if (h1)
2 h2:=l1;
3 else
4 h2:=l2;
5 l3:=l1;

Suppose only h1 and h2 are confiden-
tial and that neither l1 nor l2 are cached
initially. Even though both branches have
the same instructions and similar memory
access patterns, executing this code frag-
ment is likely to take less time when h1 is
not zero: because l1 is cached at line 2,

line 5 runs faster, and the value of h1 leaks through timing.
Some timing attacks [14, 24] also exploit data cache timing de-

pendencies to infer AES encryption keys, but indirect dependencies
arising from other hardware components have also been exploited to
construct attacks: instruction and data caches [1], branch predictors
and branch target buffers [2], and shared functional units [34].

We use the term machine environment to refer to all hardware
state that is invisible at the language level but that is needed to
predict timing. Timing channels relying on indirect dependencies
are at best difficult to reason about at language level—the semantics
of languages and even of instruction set architectures (ISAs) hide
information about execution time by abstracting away low-level
implementation details. For instance, we do not know that the timing

of line 5 depends on h1 without knowing how the data cache works
in the example above.

It is worth noting that we assume a strong adversary that is par-
ticularly interesting with the rise of cloud computing: an adversary
coresident on the system, controlling concurrent threads that can
read low memory locations. The adversary can therefore time when
low memory locations change. Further, the adversary can probe tim-
ing using the shared cache. This is a more powerful adversary than
that considered in much previous work on timing channels, includ-
ing prior attempts to control decryption side channels [5, 20, 38].
The prior methods are not effective against this adversary, who can
efficiently learn secret keys using timing side channels [24].

2.2 Representing indirect timing dependencies abstractly
Recent work in the architecture community has aimed for a hardware-
based solution to timing channels. Their hardware designs implic-
itly rely on assumptions about how software uses the hardware, but
these assumptions have not been rigorously defined. For example,
the cache design by Wang and Lee [35] works only under the as-
sumption that the AES lookup table is preloaded into cache and that
the load time is not observable to the adversary [19].

Timing channels cannot be controlled effectively purely at the
source code or the hardware level. Hardware mechanisms can help,
but do a poor job of controlling language-level leaks such as implicit
flows. The question, then, is how to usefully and accurately charac-
terize the timing semantics of code at the source level. Our insight
is to combine the language-level and hardware-level approaches, by
representing the machine environment abstractly at source level.

As is standard in information flow type systems [27], we asso-
ciate all information with a security label that in this case describes
the confidentiality of the information. Labels `1 and `2 are ordered,
written `1 v `2, if `2 describes a confidentiality requirement that is
at least as strong as that of `1. It is secure for information to flow
from label `1 to label `2. We assume there are at least two distinct
labels L (low) and H (high) such that LvH 6v L. The label of public
information is L; that of secret is H. As is standard, we denote by >
the most restrictive label, and by ⊥, the least restrictive one.

We assume that different components of the machine environ-
ment have security labels as well. For example, different partitions
in a partitioned cache [35] can be associated with different labels.

To track how information flows into the machine environment,
but without concretely representing the hardware state, we associate
two labels with each command in the program. The first of these
labels is the command’s read label `r. The read label is an upper
bound on the label of hardware state that affects the run time of the
command. For example, the run time of a command with `r = L
depends only on hardware state with label L or below. The second
of these labels is the command’s write label `w. The write label
is a lower bound on the label of hardware state that the command
can modify. It ensures that the labels of hardware state reflect the
confidentiality of information that has flowed into that state.

For example, suppose that there is only one (low) data cache,
which to be conservative means that anyone can learn from timing
whether a given memory location is cached. Therefore both the read
and write label of every command must be L. The previous example
is then annotated as follows, where the first label in brackets is the
read label, and the second, the write label.

1 if (h1)[L,L]
2 h2:=l1;[L,L]
3 else
4 h2:=l2;[L,L]
5 l3:=l1;[L,L]

The example on the left is insecure be-
cause execution of lines 2 and 4 is con-
ditioned on the high variable h1. There-
fore these lines are in a high context, one
in which the program counter label [11] is
high. If lines 2 and 4 update cache state in
the usual way, the low write label permits

low hardware state to be affected by h1. This insecure information



flow is a form of implicit flow [11], but one in which hardware state
with no language-level representation is being updated.

Since lines 2 and 4 occur in a high context, the write label of
these commands must be H for this program to be secure. Conse-
quently, the hardware may not update low parts of the machine envi-
ronment. One way to avoid modifying the cache is to deactivate it in
high contexts. A generalization of this idea is to partition the cache
into two partitions, low and high. Cache misses in a high context
then cause only the high cache partition to be updated.

With `r and `w abstracting the timing behavior of hardware,
timing channel security can be statically checked at the language
level, according to the type system described in Sec. 5. Moreover,
these timing labels could be inferred automatically according to the
type system, reducing the burden on programmers.

2.3 Language-level mitigation of timing channels
Strictly disallowing all timing leakage can be done as sketched thus
far, but results in an impractically restrictive programming language
because execution time is not permitted to depend on confidential
information in any way.

To increase expressiveness, we introduce a new command
mitigate to the language. Command mitigate (e, `) c executes
the command c while ensuring that timing leakage is bounded. The
expression e computes an initial prediction for the execution time
of c. The label ` bounds what information that can learned by ob-
serving the timing leakage c. That is, no information at level `′ such
that `′ 6v ` can be learned from c’s execution time. This property is
enforced by the type system of Sec. 5. Moreover, the type system
ensures that timing leakage can be bounded using the variation in
the execution time of mitigate commands.

To provide a strict bound on the execution time of mitigate
commands while providing practical performance, we introduce the
use of predictive timing mitigation [5, 38] as a language-level mech-
anism. The idea is that given a prediction of how long executing c
will take (the e in mitigate command), the mitigate command
ensures that at least that much time is consumed by simply waiting
if necessary. In the case of a misprediction (that is, when the esti-
mate is too low), a larger prediction is generated , and the execution
time is padded accordingly. Mispredictions also inflate the predic-
tions generated by subsequent uses of mitigate.

For example, we can use mitigate to limit timing leakage from
the command sleep(h), as in this program:

1 mitigate(1,H){sleep(h)[H,H]}

The possible execution times of this program will not be arbitrary;
they might, for example, be forced by mitigate to be the powers of
2. Limiting the possible execution times bounds the timing leakage
from sleep. We explore the details of the mitigation mechanism
more fully in Sec. 7 and evaluate its performance in Sec. 8.

Previous work has shown that predictive timing mitigation can
bound timing leakage to a function that is sublinear (in fact, poly-
logarithmic) in time. But this is the first work that provides similar,
quantitative bounds on timing leakage at the language level.

3. A language for controlling timing channels
Fig. 1 gives the syntax for a simple imperative language extended
with our mechanism. All the novel elements—read and write labels,
and the mitigate and sleep commands—have already been intro-
duced. Notice that the sequential composition command itself needs
no timing labels. As a technical convenience, each mitigate in the
source has a unique identifier η . These identifiers are mainly used
in Sec. 6; they are omitted where they are not essential.

We present our semantics in a series of modular steps. We start
with a core semantics, a largely standard semantics for a while-
language, which ignores timing. Next, we develop an abstracted full

e ::= n | x | e op e

c ::= skip[`r ,`w] | (x := e)[`r ,`w] | c;c | (while e do c)[`r ,`w]

| (if e then c1 else c2)[`r ,`w]

| (mitigateη (e, `) c)[`r ,`w] | (sleep e)[`r ,`w]

Figure 1: Syntax of the language

〈skip[`r ,`w],m〉 → 〈stop,m〉 〈(sleep e)[`r ,`w],m〉 → 〈stop,m〉

〈(mitigate (e, `) c)[`r ,`w],m〉 → 〈c,m〉

〈c1,m〉 → 〈stop,m′〉
〈c1;c2,m〉 → 〈c2,m′〉

〈c1,m〉 → 〈c′1,m′〉 c′1 6= stop
〈c1;c2,m〉 → 〈c′1;c2,m′〉

〈e,m〉 ⇓ v
〈(x := e)[`r ,`w],m〉 → 〈stop,m[x 7→ v]〉

〈e,m〉 ⇓ n n 6= 0 =⇒ i = 1 n = 0 =⇒ i = 2
〈(if e then c1 else c2)[`r ,`w],m〉 → 〈ci,m〉

〈e,m〉 ⇓ n n 6= 0
〈(while e do c)[`r ,`w],m〉 → 〈c;(while e do c)[`r ,`w],m〉

〈e,m〉 ⇓ n n = 0
〈(while e do c)[`r ,`w],m〉 → 〈stop,m〉

Figure 2: Core semantics of commands (unmitigated)

semantics that describes the timing semantics of the language more
accurately while abstracting away parameters that depend on the
language implementation, including the hardware and the compiler.

3.1 Core semantics
For expressions we use a standard big-step evaluation 〈e,m〉 ⇓ v
when expression e in memory m evaluates to value v. For commands
(Fig. 2), we write 〈c,m〉 → 〈c′,m′〉 for the transition of command c
in memory m to command c′ in memory m′. Note that read and write
labels are not used in these rules. The rules use stop as a syntactic
marker of the end of computation. We distinguish stop from the
command skip[`r ,`w] because skip is a real command that may
consume some measurable time (e.g., reading from the instruction
cache), whereas stop is purely syntactic and takes no time at all. For
mitigate we give an identity semantics for now: mitigate (e, `) c
simply evaluates to c. Since time is not part of the core semantics,
sleep behaves like skip.

3.2 Abstracted full language semantics
The core semantics ignores timing; the job of the full language
semantics is to supply a complete description of timing so that
timing channels can be precisely identified.

Writing down a full semantics as a set of transition rules would
define the complete timing behavior of the language. But this would
be useful only for a particular language implementation on particu-
lar hardware. Instead, we permit any full semantics that satisfies a
certain set of properties yet to be described. What is presented here
is therefore a kind of abstracted full semantics in which only the key
properties are fixed. This approach makes the results more general.

These key properties fall into two categories, which we call faith-
fulness requirements and security requirements. The faithfulness re-
quirements (Sec. 3.5) are straightforward; the security requirements
(Sec. 3.6) are more subtle.



3.3 Configurations
Configurations in the full semantics have the form 〈c,m,E,G〉. As
in the core semantics, c and m are the current program and mem-
ory. Component E is the machine environment, and G is the global
clock. In general G can be measured in any units of time, but we in-
terpret it as machine clock cycles hereafter. We write 〈c,m,E,G〉 →
〈c′,m′,E ′,G′〉 for evaluation transitions.

The full semantics of expression evaluation obviously also needs
to be small-step, but we choose a presentation style that elides the
details of expression evaluation.

As before, the machine environment E represents hardware state
that may affect timing but that is not needed by the core semantics.
Hardware components captured by E include the data cache and in-
struction cache, the branch prediction buffer, the translation looka-
side buffer (TLB), and other low-level components. The machine
environment might also include hidden state added by the compiler
for performance optimization.

For example, if one considers only the timing effects of data
cache and instruction caches, denoted by D and I respectively, E
could be a configuration of the form E = 〈D, I〉.

Note that while both the memory m and the machine environ-
ment E can affect timing, only the memory affects program control
flow. This is the reason to distinguish them in the semantics. The
environment E can be completely abstract as long as the properties
for the full semantics are satisfied. This separation also ensures that
the core semantics is completely standard.

The separation of m and E also clarifies possibilities for hard-
ware design. For instance, it is possible for confidential data to be
stored securely in a public partition of E, but not in public memory
(cf. Sec. 4.1).

3.4 Threat model
To evaluate whether the programming language achieves its secu-
rity goals, we need to describe the power of the adversary in terms
of the semantics. We associate an adversary with a security level `A
bounding what information the adversary can observe directly. To
represent the confidentiality of memory, we assume that an environ-
ment Γ maps variable names to security levels. If a memory location
(variable) has security level ` that flows to `A (that is, ` v `A), the
adversary is able to see the contents of that memory location. Re-
call that we are defending against a strong, coresident adversary.
Therefore, by monitoring such a memory location for changes, the
adversary can also measure the times at which the location is up-
dated.

Two memories m1 and m2 are `-equivalent, denoted m1 ∼` m2,
when they agree on the contents of locations at level ` and below:

m1 ∼` m2 , ∀x . Γ(x)v ` . m1(x) = m2(x)
Intuitively, `-equivalence of two memories means that an observer
at level ` cannot distinguish these two memories.

Projected equivalence. We define projected equivalence on
memories to require equivalence of variables with exactly level `:

m1 '` m2 , ∀x . Γ(x) = ` . m1(x) = m2(x)
We assume there is a corresponding projected equivalence relation
on machine environments. If two machine environments E1 and E2
have equivalent `-projections, denoted E1 '` E2, then `-level infor-
mation that is stored in these environments is indistinguishable. The
precise definition of projected equivalence depends on the hardware
and perhaps the language implementation. For example, for a two-
level partitioned cache containing some entries at level L and some
at level H, two caches have equivalent H-projections if they contain
the same cache entries in the H portion, regardless of the L entries.

Using projected equivalence it is straightforward to define `-
equivalence on machine environments:

E1 ∼` E2 , ∀`′ v ` . E1 '`′ E2

3.5 Faithfulness requirements for the full semantics
The faithfulness requirements for the full semantics comprise four
properties: adequacy, deterministic execution, sequential composi-
tion, and accurate sleep duration.

Adequacy specifies that the core semantics and the full seman-
tics describe the same executions: for any transition in the core se-
mantics there is a matching transition in the full semantics and vice
versa.

PROPERTY 1 (Adequacy of core semantics). ∀m,c,c′,E,G .

(∃E ′,G′ . 〈c,m,E,G〉 → 〈c′,m′,E ′,G′〉)⇔ 〈c,m〉 → 〈c′,m′〉
We also require that the full semantics be deterministic, which
means that the machine environment E completely captures the
possible influences on timing.

PROPERTY 2 (Deterministic execution). ∀m,c,E,G .

〈c,m,E,G〉 → 〈c1,m1,E1,G1〉∧ 〈c,m,E,G〉 → 〈c2,m2,E2,G2〉
=⇒ E1 = E2∧G1 = G2

Since the core semantics is already deterministic, determinism of
the machine environment and time components suffices.

Sequential composition must correctly accumulate time and
propagate the machine environment.

PROPERTY 3 (Sequential composition).
1. ∀c1,c2,m,E,G .
〈c1,m,E,G〉→〈stop,m′,E ′,G′〉⇔ 〈c1;c2,m,E,G〉→〈c2,m′,E ′,G′〉

2. ∀c1,c2,c′1,m,E,G such that c′1 6= stop .
〈c1,m,E,G〉→〈c′1,m′,E ′,G′〉⇔ 〈c1;c2,m,E,G〉→〈c′1;c2,m′,E ′,G′〉
Finally, the sleep command must take the correct amount of time
because it is used for timing mitigation. When its argument is
negative, it is assumed to take no time.

PROPERTY 4 (Accurate sleep duration). ∀n,m,E,G, `r, `w .

〈(sleep n)[`r ,`w],m,E,G〉→ 〈stop,m,E ′,G′〉⇒G′=G+max(n,0)

Discussion. The faithfulness requirements are mostly straightfor-
ward. The assumption of determinacy might sound unrealistic for
concurrent execution. But if information leaks through timing be-
cause some other thread preempts this one, the problem is in the
scheduler or in the other thread, not in the current thread. Determin-
istic time is realistic if we interpret G as the number of clock cycles
the current thread has used.

3.6 Security requirements for the full semantics
For security, the full semantics also must satisfy certain properties to
ensure that read and write labels accurately describe timing. These
properties are specified as constraints on the full semantic configura-
tions that must hold after each evaluation step. In the formalization
of these properties, we quantify over labeled commands with the
form c[`r ,`w]: that is, all commands except sequential composition.

Write labels. The write label `w is the lower bound on the parts
of the machine environment that a single evaluation step modifies.
Property 5 in Fig. 3 formalizes the requirements on the machine
environment: executing a labeled command c[`r ,`w] cannot modify
parts of the environment at levels to which `w does not flow.

Example. Consider program sleep(h)[`r ,H] under the two-level
security lattice L v H. This command is annotated with the write
label H. The only level ` such that `w 6v ` is ` = L. In this case,
Property 5 requires that an execution of sleep(h)[`r ,H] does not
modify L parts of the machine environment.

Consider program sleep(h)[`r ,L] which has write label L. Be-
cause there is no security level ` such that L 6v `, Property 5 does
not constrain the machine environment for this command.



PROPERTY 5 (Write label). Given a labeled command c[`r ,`w],
and a level ` such that `w 6v `

∀m,E,G . 〈c[`r ,`w],m,E,G〉 → 〈c′,m′,E ′,G′〉 =⇒ E '` E ′

PROPERTY 6 (Read label). Given any command c[`r ,`w],

∀m1,m2,E1,E2,G . (∀x ∈ vars1(c[`r ,`w]) . m1(x) = m2(x))

∧E1 ∼`r E2

∧〈c[`r ,`w],m1,E1,G〉 → 〈c1,m′1,E
′
1,G1〉

∧ 〈c[`r ,`w],m2,E2,G〉 → 〈c2,m′2,E
′
2,G2〉 =⇒ G1 = G2

PROPERTY 7 (Single-step machine-environment noninterference).
Given any labeled command c[`r ,`w], and any level `,
∀m1,m2, E1, E2,G1,G2 . m1 ∼` m2∧E1 ∼` E2

∧〈c[`r ,`w],m1,E1,G1〉 → 〈c1,m′1,E
′
1,G
′
1〉

∧ 〈c[`r ,`w],m2,E2,G2〉 → 〈c2,m′2,E
′
2,G
′
2〉 =⇒ E ′1 ∼` E ′2

Figure 3: Security requirements

Read labels. The read label `r of a command specifies which
parts of the machine environment may affect the time necessary to
perform the single next evaluation step. For a compound command
such as if, while, or mitigate, this time does not include time
spent in subcommands.

Property 6 in Fig. 3 formalizes the requirement that read labels
accurately capture the influences of the machine environment. This
formalization uses the vars1 function, which identifies the part of
memory that may affect the timing of the next evaluation step—
that is, a set of variables. We need vars1 because parts of the
memory can also affect timing, such as e in sleep (e). A simple
syntactic definition of vars1 conservatively approximates the timing
influences of memory, but a more precise definition might depend
on particularities of the hardware implementation. For skip, this
set is empty; for x := e and sleep (e), the set consists of x and all
variables in expression e; for if e then c1 else c2, while e do c,
and mitigate (e, `) c, it contains only variables in e and excludes
those in subcommands, since only e is evaluated during the next
step.

In the definition in Fig. 3, equality of G1 and G2 means that a
single step takes exactly the same time. Both configurations take the
same time, because m1 and m2 must agree on all variables x that are
evaluated in this step. This expresses our assumption that values of
variables other than those explicitly evaluated in a single step cannot
influence its timing. Machine environments E1 and E2 are required
to be `r-equivalent, to ensure that parts of the machine environment
other than those at `r and below also cannot influence its timing.

Consider command sleep (h)[L,`w] with read-label `r = L, with
respect to all possible pairs of memories m1,m2 and machine envi-
ronments E1,E2. Whenever m1(h) and m2(h) have different values,
Property 6 places no restrictions on the timing of this command re-
gardless of E1,E2. When m1(h) = m2(h), we require that if E1 and
E2 are L-equivalent, the resulting time must be the same. To sat-
isfy such a property, the H parts of the machine environment cannot
affect the evaluation time.

Single-step noninterference. Property 5 specifies which parts of
the machine environment can be modified. However, it does not say
anything more about the nature of the modifications. For example,
consider a three-level security lattice L v M v H, and a command
(x := y)[M,M], where both the read label and write label are M. Prop-
erty 5 requires that no modifications to L parts of the environment
are allowed, but modifications to the M level are not restricted. This
creates possibilities for insecure modifications of machine environ-

ments when H-parts of the machine environment propagate into the
M-parts. To control such propagation, we introduce Property 7 in
Fig. 3. Note that here level ` is independent of read or write labels.

4. A sketch of secure hardware
To illustrate how the requirements for the full language semantics
enable secure hardware design, we sketch two possible ways for a
design of cache and TLB to realize Properties 5–7. For simplicity,
we assume the two-point label lattice LvH throughout this section.

We start with a standard single-partition data cache similar to
current commodity cache designs and then explore a more sophisti-
cated partitioned cache similar to that in [35].

4.1 Choosing machine environments
The machine environment does not need to include all hardware
state. It should be precise enough to ensure that equivalent com-
mands always take the same time in equal environments, and no
more precise. Including state that has no effect on timing leads to
overly conservative security enforcement that hurts performance.

For example, consider a data cache, usually structured as a set
of cache lines. Each cache line contains a tag, a data block and a
valid bit. Let us compare two possible ways to describe this as a
machine environment: a more precise modeling of all three fields—a
set of triples 〈tag,data block,valid bit〉—versus a coarser modeling
of only the tags and valid bits—a set of pairs 〈tag,valid bit〉.

The coarse-grained abstraction of data cache state is adequate
to predict execution time, since for most cache implementations,
the contents of data blocks do not affect access time. The fine-
grained abstraction does not work as well. For example, consider the
command h := h’ occurring in a low context. That is, variables h
and h’ are confidential, but the fact that the assignment is happening
is not. With the fine-grained abstraction, the low part of the cache
cannot record the value of h if Property 7 is to hold, because the
low-equivalent memories m1 and m2 appearing in its definition may
differ on the value of h’. With the coarse-grained abstraction, the
location h can be stored in low cache, because Property 7 holds
without making the value of h’ part of the machine environment.

The coarse-grained abstraction shows that high variables can re-
side in low cache without hurting security in at least some circum-
stances. This is quite different from the treatment of memory, be-
cause public memory cannot hold confidential data. Without the for-
malization of Property 7, it would be difficult to reason about it. Yet
this insight is important for performance: otherwise, code with a low
timing label cannot access high variables using cache.

4.2 Realization on standard hardware
At least some standard CPUs can satisfy the security requirements
(Properties 5–7). Intel’s family of Pentium and Xeon processors has
a “no-fill” mode in which accesses are served directly from memory
on cache misses, with no evictions from nor filling of the data cache.

Our approach can be implemented by treating the whole cache
as low, and therefore disallowing cache writes from high contexts.
For each block of instructions with `w = H, the compiler inserts a
no-fill start instruction before, and a no-fill exit instruction after.

It is easy to verify that Properties 5–7 hold, as follows:

Property 5. For commands with `w = L, this property is vac-
uously true since there is no ` such that L 6v `. Commands with
`w = H are executed in “no-fill” mode, so the result is trivial.

Property 6. Since there is only one (L) partition, E1 ∼`r E2 is
equivalent to E1 = E2. The property can be verified for each com-
mand. For instance, consider command sleep (e)[`r ,`w]. The condi-
tion ∀x ∈ vars1(c[`r ,`w]).m1(x) = m2(x) ensures that m1(e) = m2(e).
Thus, this command is suspended for the same time. Moreover,
since E1 = E2, cache access time must be the same according to
Property 2. So, we have G1 = G2.



Property 7. We only need to check the L partition, which can
be verified for each command. For instance, consider command
sleep (e)[`r ,`w]. When `w = H, the result is true simply because the
cache is not modified. Otherwise, the same addresses (variables) are
accessed. Since initial cache states are equivalent, identical accesses
yields equivalent cache states.

4.3 A more efficient realization
A more efficient hardware design might partition both the cache(s)
and the TLB according to security labels. Let us assume both the
cache and TLB are equally, statically partitioned into two parts: L
and H. The hardware accesses different parts as directed by a timing
label that is provided from the software level. As discussed in Sec. 8,
we have implemented a simulation of this design; here we focus on
the correctness of hardware design.

One subtle issue is consistency, since data can be stored in both
the L and the H partitions. We avoid inconsistency by keeping
only one copy in the cache and TLB. In any CPU pipeline stage
that accesses memory when the timing label is H, both H and L
partitions are searched. If there is a cache miss, data is installed in
the H partition. When the timing label is L, only the L partition
is searched. However, to preserve consistency, instead of fetching
the data from next level or memory, the controller moves the data
from H partition if it already exists there. To satisfy Property 6, the
hardware ensures this process takes the same time as a cache miss.

We can informally verify Properties 5–7 for this design as well:

Property 5. When the write label is L, this property holds trivially
because there is no label such that L 6v `. When the write label is H,
a new entry is installed only in the H partition, so E ∼L E ′.

Property 6. The premise of Property 6 ensures that all variables
evaluated in a single step have identical values, so any variation in
execution time is due to the machine environment. When the read
label is H, E1 ∼H E2 ensures that the machine environments are
identical; therefore, the access time is also identical. When the read
label is L, the access time depends only on the existence of the entry
in L cache/TLB. Even if the data is in the H partition, the load time
is the same as if there were an L-partition miss.

Property 7. This requirement requires noninterference for a sin-
gle step. Contents of the H partition can affect the L part in the next
step only when data is stored in the H partition and the access has
a timing label L. Since data is installed into the L part regardless of
the state of the H partition, this property is still satisfied.

Discussion on formal proof and multilevel security. We have
discussed efficient hardware for a two-level label system. Verifica-
tion of multilevel security hardware is more challenging. One real-
ization exists in Caisson [21], which enforces a version of nonin-
terference that is both memory and timing-sensitive. Property 7 re-
quires only timing-insensitive noninterference, so Caisson arguably
tackles an unnecessarily difficult problem. A similar implementa-
tion that satisfies Property 7 more exactly might be more efficient.

5. A type system for controlling timing channels
Next, we present the security type system for our language. This
section focuses on the non-quantitative guarantees that the type sys-
tem provides, assuming Properties 1–7 hold. We show that the type
system isolates the places where timing needs to be controlled ex-
ternally. These places are where mitigate commands are needed.
5.1 Security type system
Typing rules for expressions have form Γ ` e : ` where Γ is the
security environment (a map from variables to security labels), e
is the expression, and ` is the type of the expression. The rules are
standard [27] and we omit them here. Typing rules for commands,
in Fig. 4, have the form Γ,pc,τ ` c : τ ′. Here pc is the usual

program-counter label [27], τ is the timing start-label, and τ ′ is the
timing end-label. The timing start- and end-labels bound the level
of information that flows into timing before and after executing c,
respectively. We write Γ ` c to denote Γ,⊥,⊥ ` c : τ ′ for some τ ′.

All rules enforce the constraint τ v τ ′ because timing depen-
dencies accumulate as the program executes. Every rule except (T-
MTG) also propagates the timing end-labels of subcommands. This
can be seen most clearly in the rule for sequential composition (T-
SEQ): the end-label from c1 is the start-label for c2.

All remaining rules require pc v `w. This restriction, together
with Property 5, ensures that no confidential information about
control flow leaks to the low parts of the machine environment.
We do not require τ v `w because we assume the adversary cannot
directly observe the timing of updates to the machine environment.
This assumption is reasonable since the ISA gives no way to check
whether a given location is in cache.

Rule (T-SKIP) takes the read label `r into account in its timing
end-label. The intuition is that reading from confidential parts of the
machine environment should be reflected in the timing end-label.

Rule (T-ASGN) for assignments x := e requires ` t pc t τ t
`r v Γ(x), where ` is the level of the expression. The condition
`tpc v Γ(x) is standard. We also require τ t `r v Γ(x), to prevent
information from leaking via the timing of the update, from either
the current time or the machine environment. The timing end-label
is set to Γ(x), bounding all sources of timing leaks.

Notice that the write label `w is independent of the label on x.
The reason is that `w is the interface for software to tell hardware
which state may be modified. A low write label on an assignment to
a high variable permits the variable to be stored in low cache.

Because sleep has no memory side effects, rule (T-SLEEP)
is slightly simpler than that for assignments; the timing end-label
conservatively includes all sources of timing information leaks.

Rule (T-IF) restricts the environment in which branches c1 and
c2 are type-checked. As is standard, the program-counter label is
raised to `t pc. The timing start-labels are also restricted to reflect
the effect of reading from the `r-parts of the machine environment
and of the branching expression. Rule (T-WHILE) imposes similar
conditions on end-label τ ′, except that τ ′ can also be used as both
start- and end-labels for type-checking the loop body.

The most interesting rule is (T-MTG). The end-label τ ′ from
command c is bounded by mitigation label `′, but τ ′ does not
propagate to the end-label of the mitigate. Instead, the end-label of
the mitigate command only accounts for the timing of evaluating
expression e. This is because the predictive mitigation mechanism
used at run time controls how c’s timing leaks information.

We have seen that for security, the write label of a command
must be higher than the label of the program counter. There is
no corresponding restriction on the read label of a command. The
hardware may be able to provide better performance if a higher
read label is chosen. For instance, in most cache designs, reading
from the cache changes its state. The cache can only be used when
`r = `w, so this condition should be satisfied for best performance.

5.2 Machine-environment noninterference
An important property of the type system is that it guarantees ma-
chine environment noninterference. This requires execution to pre-
serve low-equivalence of memory and machine environments.

THEOREM 1 (Memory and machine-environment noninterference).

∀E1,E2,m1,m2,G,c, ` . Γ ` c∧m1 ∼` m2∧E1 ∼` E2

∧〈c,m1,E1,G〉 →∗ 〈stop,m′1,E ′1,G1〉
∧ 〈c,m2,E2,G〉 →∗ 〈stop,m′2,E ′2,G2〉

=⇒ m′1 ∼` m′2∧E ′1 ∼` E ′2



pcv `w

Γ,pc,τ ` skip[`r ,`w] : τ t `r
T-SKIP

Γ ` e : ` pcv `w `tpct τ t `r v Γ(x)
Γ,pc,τ ` x := e[`r ,`w] : Γ(x)

T-ASGN
Γ ` e : ` pcv `w

Γ,pc,τ ` (sleep (e))[`r ,`w] : τ t `t `r
T-SLEEP

Γ ` e : ` pcv `w Γ, `tpc, `t τ t `r ` ci : τi i = 1,2
Γ,pc,τ ` (if e then c1 else c2)[`r ,`w] : τ1t τ2

T-IF
Γ ` e : ` pcv `w `t τ t `r v τ

′
Γ, `tpc,τ ′ ` c : τ

′

Γ,pc,τ ` (while e do c)[`r ,`w] : τ
′ T-WHILE

Γ,pc,τ ` c1 : τ1 Γ,pc,τ1 ` c2 : τ2

Γ,pc,τ ` c1;c2 : τ2
T-SEQ

Γ ` e : ` pcv `w Γ,pc,τ t `t `r ` c : τ
′

τ
′ v `′

Γ,pc,τ ` (mitigate (e, `′) c)[`r ,`w] : `t τ t `r
T-MTG

Figure 4: Typing rules: commands

Theorem 1 guarantees the adversary obtains no information by ob-
serving public parts of the memory and machine environments. Any
confidential information the adversary obtains must be via timing.
The proof is provided in the corresponding technical report [39].

Theorem 1 does not guarantee that information is not leaked
through timing, that is, by observation of G. However, such a guar-
antee holds if the program contains no mitigate commands. This
stronger guarantee is not proved here because it is a corollary of
more general results presented in the next section.

A note on termination. The definition of memory and ma-
chine noninterference in Theorem 1 is presented in the batch-style
termination-insensitive form [4]. Such definitions are simple but or-
dinarily limit one’s results to programs that eventually terminate.
Because termination channels are a special case of timing channels,
using a batch-style definition is not fundamentally limiting here.

6. Quantitative properties of the type system
The type system identifies potential timing channels in the program.
We now introduce a quantitative measure of leakage for multilevel
systems, and show that the type system quantitatively bounds leak-
age through both timing and storage channels. The main result of
this section is that information leakage can be bounded in the terms
of the variation in the execution time of mitigate commands alone.

6.1 Adversary observations
As discussed earlier in Sec. 3.4, an adversary at level `A observes
memory, including timing of updates to memory, at levels up to `A.
The adversary does not directly observe the time of termination of
the program, but this is easily simulated by adding a final low assign-
ment to the program. To formally define adversary observations, we
refine our presentation of the language semantics with observable
assignment events.

Observable assignment events. Let α ∈ {(x,v, t),ε} range over
observable events, which can be either an assignment to variable x
of value v at time t, or an empty event ε . An event (x,v,G′) is gener-
ated by assignment transitions 〈x := e,m,E,G〉→ 〈stop,m′,E ′,G′〉,
where 〈m,e〉 ⇓ v, and by all transitions whose derivation includes a
subderivation of such a transition.

We write 〈c,m,E,G〉V (x,v, t) if configuration 〈c,m,E,G〉 pro-
duces a sequence of events (x,v, t) = (x1,v1, t1) . . .(xn,vn, tn) and
reaches a final configuration 〈stop,m′,E ′,G′〉 for some m′,E ′,G′.

`A-observable events. An event (x,v, t) is observable to the adver-
sary at level `A when Γ(x) v `A. Given a configuration 〈c,m,E,G〉
such that 〈c,m,E,G〉V (x,v, t), we write 〈c,m,E,G〉V`A (x

′,v′, t′)
for the longest subsequence of (x,v, t) such that for all events
(xi,vi, ti) in (x′,v′, t′) it holds that Γ(xi)v `A.

For example, for program l1 := l2;h1 := l1, the H-adversary
observes two assignments: 〈c,m,E,G〉VH (l1,v1, t1), (h1,v2, t2) for
some v1, t1,v2 and t2. For the L-adversary, we have 〈c,m,E,G〉VL
(l1,v1, t1), which does not include the assignment to h1.

6.2 Measuring leakage in a multilevel environment
Using `A-observable events, we can define a novel information-
theoretic measure of leakage: leakage from a set of security levels
L to an adversary level `A. We start with an observation on our
adversary model and the corresponding auxiliary definition.

Because an adversary observes all levels up to `A, we can exclude
these security levels from the ones that give new information. Let
L`A be the subset of L that excludes all levels observable to `A,
that is L`A , {`′ | `′ ∈L ∧ `′ 6v `A}. For example, for a three-level
lattice LvM v H, with `A = M, if L = {M,H} then L`A = {H}.

Fig. 5a illustrates a general form of this definition. The adversary
level `A is represented by the white point; the levels observable to
the adversary correspond to the small rectangular area under the
point `A. The set of security levels L is represented by the dashed
rectangle (though in general this set does not have to be contiguous).
The gray area corresponds to the security levels that are in L`A .

Leakage from L to `A. We measure the quantitative leakage as
the logarithm (base 2) of the number of distinguishable observations
of the adversary—the possible (x,v, t) sequences—from indistin-
guishable memory and machine environments. As shown in [38],
this measure bounds those of Shannon entropy and min-entropy,
used in the literature [11, 22, 31].

DEFINITION 1 (Quantitative leakage from L to `A ). Given any
`A, m, and E, the leakage of program c from levels L to level
`A, denoted by Q(L , `A,c,m,E) is defined as follows

Q(L , `A,c,m,E), log(| {(x,v, t) | ∃m′,E ′ . (∀`′ . `′ 6∈L`A .

m'`′ m′∧E '`′ E ′)∧〈c,m′,E ′,0〉V`A (x,v, t)} |)

This definition uses L`A to restrict the quantification of the memory
and machine environments so that we allow variations only in L`A
parts of memory and machine environments. This is expressed by
requiring projected equivalence (on the second line of the definition)
for all levels `′ not in L`A . Visually, using Fig. 5a, this captures the
flows from the gray area to the lower rectangle.

Note that the definition distinguishes flows between different
levels. For example, in a three-level security lattice LvM v H and
a program sleep (h) where h has level H, the leakage from {M} to
L is zero even though flow from {H} to L is not.

6.3 Guarantees of the type system
The type system provides an important property: leakage from L to
`A is bounded by the timing variation of the mitigate commands
whose mitigation level `′ is in the upward closure of L`A .

Upward closure. In order to correctly approximate leakage from
levels in L`A , we need to account for all levels that are as restrictive
as the ones in L`A . For example, in a three-level lattice LvM vH,
let L be the set {M}, and let `A = L; then L`A = {M}. Informa-
tion from M can flow to H, so in order to account conservatively
for leakage from {M}, we must also account for leakage from H.
Our definitions therefore use the upward closure of L`A , written as



(a) Leakage from L to `A (b) Variations with L v
`A

Figure 5: Quantitative leakage

L`A↑ , {`′ | ∃` ∈L`A ∧ ` v `′}. In this example, L`A↑ = {M,H}.
Fig. 5b illustrates the relationship between L`A and its upper clo-
sure, where L`A↑ includes both shades of gray.

Trace and projection of mitigate commands. Next, we focus on
the amount of time a mitigate command takes to execute. Recall
from Sec. 3 that each mitigate in a program source has an η-
identifier. For brevity, we refer to the command mitigateη as Mη .
Consider trace 〈c,m,E,G〉 →∗ 〈stop,m′,E ′,G′〉. We overload the
notation for V, by writing 〈c,m,E,G〉V (M, t), where (M, t) is
a vector of mitigate commands executed in the above trace. The
vector consists of the individual tuples (M, t)= (Mη1 , t1) . . .(Mηn , tn)
where (Mηi , ti) are ordered by the time of completion, and each
(Mηi , ti) corresponds to a mitigateηi taking time ti to execute.

Further, define the projection of mitigate commands (M, t)� f
as the longest subsequence of (M, t) such that each (Mη , t) in the
subsequence satisfies predicate f.

Low-determinism of mitigate commands. Consider the fol-
lowing well-typed program that uses mitigate twice.

1 mitigate1(1,H) {
2 if (high)
3 then mitigate2(1, H) { h:=h+1 }
4 else skip; }

Let us write pc(Mη ) for the value of the pc-label at program point η .
It is easy to see that pc(M1) = L, and pc(M2) = H. Because M2 is
nested within M1, the timing of M2 is accumulated in the timing
of M1. Therefore, when reasoning about the timing of the whole
program, it is sufficient to only reason about the timing of M1.
In general, given a set of levels L , an adversary level `A, and a
vector (M, t), we filter high mitigate commands by the projection
(M, t) � pc(Mη )6∈L`A↑. This projection consists of all the mitigate
commands whose pc-label is in the white area in Fig. 5b.

Filtering out high mitigate commands rules out unrelated vari-
ations in the mitigate commands. It turns out that in well-typed
programs, the occurrence of the remaining low mitigate com-
mands is deterministic (we call these commands low-deterministic).
This result, formalized in the following lemma, is used in the deriva-
tion of leakage bounds in Sec. 7.

LEMMA 1. (Low-determinism of mitigate commands). For all
programs c such that Γ ` c, adversary levels `A, sets of security
levels L , and memories and environments E1,E2,m1,m2 such that
(∀`′ 6∈L`A↑ . E1 '`′ E2∧m1 '`′ m2), we have

〈c,m1,E1,0〉V (M1, t1)∧〈c,m2,E2,0〉V (M2, t2)

=⇒ M1 �
pc(Mη )6∈L`A↑ = M2 �

pc(Mη )6∈L`A↑

Note that there are no constraints on time components t1 and t2.
That is, the same mitigate commands may take different times to
execute in different traces. The proof is contained in the correspond-
ing technical report [39].

Mitigation levels. Per Sec. 3, the argument ` in mitigateη (e, `) c
is an upper bound on the timing leakage of command c. Let lev(Mη )
be the label argument of mitigateη command. We call this the mit-
igation level of Mη . Note that lev(Mη ) is unrelated to pc(Mη ). For
instance, in the example above, pc(M1) = L, because M1 appears in
the L-context, but lev(M1) = H.

Mitigation levels are connected to how much information an
adversary at level `A may learn. For example, information at level `
can leak to adversary at level `A (` 6v `A ) by a command Mη only
when ` v lev(Mη ). In general, information from a set of levels L
can be leaked by mitigate commands such that lev(Mη ) ∈L`A↑.

This leads to the definition of timing variations.

DEFINITION 2 (Timing variations of mitigate commands). Given
a set of security levels L , an adversary level `A, program c, mem-
ory m, and a machine environment E, let V be the timing variations
of mitigate commands:

V(L , `A,c,m,E), {t′ | ∃ m′,E ′ .

(∀`′ 6∈L`A↑ . m'`′ m′∧E '`′ E ′)∧〈c,m′,E ′,0〉V (M, t)

∧ (M′, t′) = (M, t)�pc(Mη )6∈L`A↑∧lev(Mη )∈L`A↑}

An interesting component of this definition is the predicate used
to project (M, t). In essence, we only focus on the mitigate com-
mands that appear in low contexts and have high mitigation levels,
such as the first mitigate in the example earlier. Also notice that
this set counts only the distinct timing components of the mitigate
command projection, ignoring the M′ component. This is sufficient
because for well-typed programs the M′ components of the vectors
(M′, t′) are low-deterministic by Lemma 1.

In this definition, memory and machine environments are quan-
tified differently from Definition 1, by considering variations with
respect to a larger set of security levels L`A↑. In Fig. 5b, this corre-
sponds to flows from both gray areas to the area observable by the
adversary.

Leakage bounds guaranteed by the type system. The type sys-
tem ensures that only the execution time of mitigate commands
within certain projections may leak information.

THEOREM 2 (Bound on leakage via variations). Given a command
c, such that Γ ` c, and an adversary level `A, we have that for all m,
E and L it holds that

Q(L , `A,c,m,E)≤ log |V(L , `A,c,m,E)|

The proof is included in the corresponding technical report [39]. An
interesting corollary of the theorem is that leakage is zero whenever
a program c contains no mitigate command, or more generally,
when all mitigate commands take fixed time since there is only
one timing variation of mitigate commands in this special case.

7. Predictive mitigation
Predictive mitigation [5, 38] removes confidential information from
timing of public events by delaying them according to predefined
schedules. We build upon this prior work [5, 38], but unlike the
earlier work, our results improve precision for multilevel security,
enabling better tradeoffs between security and performance.

Instead of delaying public assignments themselves, we delay the
completions of mitigate commands that may potentially precede
public events. This is sufficient for well-typed programs, because
according to Theorem 2, only timing variations of mitigate com-
mands carry sensitive information. The idea is that as long as the ex-
ecution time of the mitigate command is no greater than predicted,
little information is leaked. Upon a misprediction (when actual ex-
ecution time is longer than predicted), a new schedule is chosen in
such a way that future mispredictions are rarer.



〈update(n, `),m,E,G〉 → 〈(while (time− sη ≥ predict(n, `)) do (Miss[`] := Miss[`]+1;)[⊥,⊥])[⊥,⊥],m,E,G〉 (S-UPDATE)

〈mitigateη (n, `) c,m,E,G〉 → 〈sη := time[⊥,⊥];c;update(n, `);(sleep (predict(n, `)−time+ sη ))[⊥,⊥],m,E,G〉 (S-MTGPRED)

Figure 6: Predictive semantics for mitigate

Name # of sets issue block size latency
L1 Data Cache 128 4-way 32 byte 1 cycle
L2 Data Cache 1024 4-way 64 byte 6 cycles
L1 Inst. Cache 512 1-way 32 byte 1 cycle
L2 Inst. Cache 1024 4-way 64 byte 6 cycles

Data TLB 16 4-way 4KB 30 cycles
Instruction TLB 32 4-way 4KB 30 cycles

Table 1: Machine environment parameters

Mitigating semantics. Fig. 6 shows the fragment of small-step
semantics that implements predictive mitigation. We record mis-
predictions in a special array Miss, assuming Miss is initialized
to zeros and is otherwise unreferenced in programs. Expression
time provides the current value of the global clock. Expression
predict(n, `) = max(n,1) · 2Miss[`] returns the current prediction
for level ` with initial estimate n. This prediction is the fast dou-
bling scheme [5] with the local penalty policy [38] ; other schemes
and penalty policies are possible [5, 38], but are not considered here.

In rule (S-MTGPRED), mitigate transitions to a code frag-
ment that penalizes and delays the execution time of c. Variable sη

records the time when mitigation has started. If execution of c takes
less time (time−sη ) than predicted, command update does noth-
ing; the execution idles until the predicted time. If executing c takes
longer than predicted, update increments Miss[`] until the new
prediction is greater than the time that c has consumed.

Leakage analysis of the mitigating semantics. Note that all aux-
iliary commands in Fig. 6 have labels [⊥,⊥], ensuring no confiden-
tial information about machine environments is leaked when exe-
cuting these commands. Moreover, the execution time of the whole
mitigated block is at least predict(n, `). Thus, the timing varia-
tion of a single mitigate command is controlled by the variation
of possible values of predict(n, `).

We can show that leakage is at most |L`A↑|·log(K+1)·(1+ log T ).
Here T is the elapsed time and K is the number of relevant
mitigate statements in the trace: the ones satisfying pc(Mη ) 6∈
L`A↑∧ lev(Mη ) ∈L`A↑. When mitigate is not used, K = 0, so no
timing leakage occurs. When K is unknown, it can be conservatively
bounded by T , yielding an O(log2 T ) leakage bound. Note that the
bound is proportional to the size of the set L`A↑. A detailed analysis
and derivation can be found in the technical report [39].

8. Implementation
We implemented a simulation of the partitioned cache design de-
scribed in Sec. 4.3 so we could evaluate our approach on real C
programs. As case studies, we chose two applications previously
shown to be vulnerable to timing attacks. The results suggest the
new mechanism is sound and has reasonable performance.

8.1 Hardware implementation
We developed a detailed, dynamically scheduled processor model
supporting two-level data and instruction caches, data and instruc-
tion TLBs, and speculative execution. Table 1 summarizes the fea-
tures of the machine environment. We implemented this processor
design by modifying the SimpleScalar simulator, v.3.0e [9].

A new register is added as an interface to communicate the
timing label from the software to the hardware. Simply encoding
the timing labels into instructions does not work, since labels may be
required before the instruction is fetched and decoded: for example,

to guide instruction cache behavior. Labels are also propagated
along the pipeline to restrict the behavior of hardware.

As discussed in Sec. 5.1, commodity cache designs require `r =
`w. In our implementation, we treat this requirement as an extra side
condition in the type system.

8.2 Compilation
We use the gcc compiler in the SimpleScalar tool set to run C
applications on the simulator. Sensitive data in applications are
labeled, and timing labels are then inferred as the least restrictive
labels satisfying the typing rules from Fig. 4 (transferring the rules
from Sec. 5 to C is straightforward). To inform the hardware of the
current timing label, assembly code setting the timing-label register
is inserted before and after command blocks.

Selecting the initial prediction. With the doubling policy, the
slowdown of mitigation is at most twice the worst-case time. To
improve performance, we can sample the running time of mitigated
commands, setting the initial prediction to be a little higher than the
average. In the experiments, we used 110% of average running time,
measured with randomly generated secrets, as the initial prediction.

8.3 Web login case study
Web applications have been shown vulnerable to timing channel at-
tacks. For example, Bortz and Boneh [7] have shown that adver-
saries can probe for valid usernames using a timing channel in the
login process. This is unfortunate since usernames can be abused for
spam, advertising, and phishing.

1 Hashmap m:=loadusers()
2 while true
3 (user, pass):=input()
4 uhash:=MD5(user)
5 if uhash in m
6 hash:=m.get(uhash)
7 phash:=MD5(pass)
8 if phash=hash
9 state:=success
10 state:=fail
11 response:=1

The pseudo-code for a sim-
ple web-application login pro-
cedure is on the right. The vari-
able response and user in-
puts user, pass are public to
users. Contents of the preloaded
hashmap m (MD5 digests of
valid usernames and corre-
sponding passwords), password
digest hash and the login status
state are secrets. The final as-
signment to public variable response is always 1 on purpose in
order to avoid the storage channel arising from the response. How-
ever, the timing of this assignment might create a timing channel.

The leakage is explicit when all confidential data (m, hash and
state) are labeled H. The type system forces line 1 and line 5–
10 to have high timing labels, so without a mitigate command,
type checking fails at line 11. We secure this code by separately
mitigating both line 1 and lines 5–10. The code then type-checks.

Correctness. In each of our experiments, we measured the time
needed to perform a login attempt using 100 different usernames.
Since valid usernames (the hashmap m) are secrets in this case study,
we varied the number of these usernames that were valid among 10,
50, and 100. The resulting measurements are shown as three curves
in the upper part of Fig. 7. The horizontal axis shows which login
attempt was measured and the vertical axis is time.

The data for 10 and 50 valid usernames show that an adversary
can easily distinguish invalid and valid usernames using login time.
There is also measurable variation in timing even among different
valid usernames. It is not clear what a clever adversary could learn
from this, but since passwords are used in the computation, it seems
likely that something about them is leaked too.
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Figure 7: Login time with various secrets

nopar moff mon
ave. time (valid) 70618 78610 86132

ave. time (invalid) 39593 43756 86147
overhead (valid) 1 1.11 1.22

Table 2: Login time with various usernames and options (in clock cycles)

The lower part of the figure shows the timing of the same ex-
periments with timing channel mitigation in use. With mitigation
enabled, execution time does not depend on secrets, and therefore
all three curves coincide. This result validates the soundness of our
approach. The roughly 30-cycle timing difference between different
requests does not represent a security vulnerability because it is un-
affected by secrets; it is influenced only by public information such
as the position in the request sequence.

Performance. Table 2 shows the execution time of the main loop
with various options, including both valid and invalid usernames,
hardware with no partitions (nopar), and secure hardware both with-
out (moff) and with (mon) mitigation.

As in Fig. 7, for unmitigated logins, valid and invalid usernames
can be easily distinguished, but mitigation prevents this (we also ver-
ified that the tiny difference is unaffected by secrets). Table 2 shows
that partitioned hardware is slower by about 11%. On valid user-
names, language-based mitigation adds 10% slowdown; slowdown
with combined software/hardware mitigation is about 22%.

8.4 RSA case study
The timing of efficient RSA implementations depends on the pri-
vate key, creating a vulnerability to timing attacks [8, 18]. Using
the RSA reference implementation, we demonstrate that its timing
channels can be mitigated when decrypting a multi-block message.

1 text:=readText()
2 for each block b in text
3 . . .preprocess . . .
4 compute (p:=bkey mod n)
5 . . .postprocess . . .
6 write(output, plain)

In the pseudo-code on the left,
only line 4 uses confidential
data. Therefore, source code
corresponding to this line is la-
beled as high. Both “prepro-
cess” and “postprocess” include

low assignments whose timing is observable to the adversary.

Correctness. We use 100 encrypted messages and two different
private keys to measure whether secrets affect timing. The upper plot
in Fig. 8 shows that different private keys have different decryption
times, so decryption time does leak information about the private
key. The lower plot shows that mitigated time is exactly 32,001,922
cycles regardless of the private key. Timing channel leakage is
successfully mitigated.
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Figure 9: Language-level vs. system-level mitigation

Performance. To evaluate how mitigation affects decryption
time, we use 10 encrypted secret messages whose size ranges from 1
to 10 blocks; the size is treated as public. We also compared the per-
formance of language-level mitigation with system-level predictive
mitigation [5], even though system-level mitigation is not effec-
tive against the strong, coresident attacker. To simulate system-level
mitigation, the entire code body was wrapped in a single mitigate
command. The results in Fig. 9 show that fine-grained language-
based mitigation is faster because it does not try to mitigate the
timing variation due to the number of decrypted blocks.

9. Related work
Control of internal timing channels has been studied from different
perspectives, and several papers have explored a language-based
approach. Low observational determinism [16, 37] can control these
channels by eliminating dangerous races.

External timing channels are harder to control. Much prior
language-based work on external timing channels uses simple,
implicit models of timing, and no previous work fully addresses
indirect dependencies. Type systems have been proposed to pre-
vent timing channels [33], but are very restrictive. Often (e.g.,
[28, 30, 32, 33]) timing behavior of the program is assumed to be
accurately described by the number of steps taken in an operational
semantics. This assumption does not hold even at the machine-
language level, unless we fully model the hardware implementation
in the operational semantics and verify the entire software and hard-
ware stack together. Our approach adds a layer of abstraction so
software and hardware can be designed and verified independently.

Some previous work uses program transformation to remove in-
direct dependencies, though only those arising from data cache. The
main idea is to equalize the execution time of different branches,
but a price is paid in expressiveness, since these languages either
rule out loops with confidential guards (as in [3, 6, 15]), or limit the



number of loop iterations [10, 23]. These methods do not handle all
indirect timing dependencies; for example, the instruction cache is
not handled, so verified programs remain vulnerable to other indi-
rect timing attacks [1, 2, 34].

Secure multi-execution [12, 17] provides timing-sensitive nonin-
terference yet is probably less restrictive than the prior approaches
discussed above. The security guarantee is weaker than in our ap-
proach: that the number of instructions executed, rather than the
time, leaks no information for incomparable levels. Extra computa-
tional work is also required per security level, hurting performance,
and no quantitative bound on leakage is obtained.

Though security cannot be enforced purely at the hardware level,
hardware techniques have been proposed to mitigate timing chan-
nels. Targeting cache-based timing attacks, both static [25] and dy-
namic [35] mechanisms, based on the idea of partitioned cache, have
been proposed. Such designs are ad hoc and hard to verify against
other attacks. For example, Kong et al. [19] show vulnerabilities
in Wang’s cache design [35]. Recent work by Li et al. [21] intro-
duces a statically verifiable hardware description language for build-
ing hardware that is information-flow secure by construction. This
work could complement our own.

10. Conclusions
Timing channels have long been considered one of the toughest
challenges in computer security. They have become more of a con-
cern as different computing systems are more tightly intermeshed
and code from different trust domains is executed on the same hard-
ware (e.g., cloud computing servers and web browsers).

Solving the timing channel problem requires work at both the
hardware level and the software level. Neither level has enough in-
formation to allow accurate reasoning about timing channels, be-
cause timing is a property that crosses abstraction boundaries.

The new abstraction of read and write labels makes a useful step
toward allowing timing channels to be controlled effectively at the
language level. The corresponding security properties help guide the
design of hardware secure against timing attacks.

For programs where timing channels cannot be blocked entirely,
predictive mitigation can be incorporated at the language level. The
security guarantees of this language-level enforcement have been
proved formally; the performance characteristics of the enforcement
mechanism have been studied experimentally and appear promising.

Acknowledgments
We thank Owen Arden, Dan Ports, and Nate Foster for their helpful
suggestions. This work has been supported by a grant from the
Office of Naval Research (ONR N000140910652), by two grants
from the NSF: 0424422 (the TRUST center), and 0964409, and
by MURI grant FA9550-12-1-0400, administered by the US Air
Force. This research is also sponsored by the Air Force Research
Laboratory.

References
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[2] O. Acıiçmez, C. Koç, and J. Seifert. On the power of simple branch prediction
analysis. In ASIACCS, pages 312–320, 2007.

[3] J. Agat. Transforming out timing leaks. In Proc. 27th ACM Symp. on Principles of
Programming Languages (POPL), pages 40–53, Boston, MA, January 2000.

[4] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive nonin-
terference leaks more than just a bit. In ESORICS, pages 333–348, October 2008.

[5] A. Askarov, D. Zhang, and A. C. Myers. Predictive black-box mitigation of timing
channels. In ACM Conf. on Computer and Communications Security (CCS), pages
297–307, October 2010.

[6] G. Barthe, T. Rezk, and M. Warnier. Preventing timing leaks through transac-
tional branching instructions. Electronic Notes in Theoretical Computer Science,
153(2):33–55, 2006.

[7] A. Bortz and D. Boneh. Exposing private information by timing web applications.
In Proc. 16th Int’l World-Wide Web Conf., May 2007.

[8] D. Brumley and D. Boneh. Remote timing attacks are practical. Computer
Networks, January 2005.

[9] D. C. Burger and T. M. Austin. The SimpleScalar tool set, version 3.0. Technical
Report CS-TR-97-1342, University of Wisconsin, Madison, June 1997.

[10] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter. Practical mit-
igations for timing-based side-channel attacks on modern x86 processors. IEEE
Symposium on Security and Privacy, pages 45–60, 2009.

[11] D. E. Denning. Cryptography and Data Security. Addison-Wesley, Reading,
Massachusetts, 1982.

[12] D. Devriese and F. Piessens. Noninterference through secure multi-execution. In
IEEE Symposium on Security and Privacy, pages 109–124, May 2010.

[13] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts. Covert messaging through
TCP timestamps. Privacy Enhancing Technologies, Lecture Notes in Computer
Science, 2482(2003):189–193, 2003.

[14] D. Gullasch, E. Bangerter, and S. Krenn. Cache games—bringing access-based
cache attacks on AES to practice. In IEEE Symposium on Security and Privacy,
pages 490–505, 2011.

[15] D. Hedin and D. Sands. Timing aware information flow security for a JavaCard-
like bytecode. Electronic Notes in Theoretical Computer Science, 141(1):163–182,
2005.

[16] M. Huisman, P. Worah, and K. Sunesen. A temporal logic characterisation of
observational determinism. In Proc. 19th IEEE Computer Security Foundations
Workshop, 2006.

[17] V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and termination-sensitive
secure information flow: Exploring a new approach. In IEEE Symposium on
Security and Privacy, pages 413–430, May 2011.

[18] P. Kocher. Timing attacks on implementations of Diffie–Hellman, RSA, DSS, and
other systems. In Advances in Cryptology—CRYPTO’96, August 1996.
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