
Static enforcement of security in runtime systems
Mathias V. Pedersen

Department of Computer Science
Aarhus University

mvp@cs.au.dk

Aslan Askarov
Department of Computer Science

Aarhus University
aslan@cs.au.dk

Abstract—Underneath every modern programming language
is a runtime environment (RTE) that handles features such as
automatic memory management and thread scheduling. In the
information-flow control (IFC) literature, the RTE is often part
of the trusted computing base (TCB), and there has been little
focus on applying IFC to the implementation of the RTE itself. In
this paper we address this problem by designing an IFC language,
Zee, for implementing secure RTEs, thereby removing the RTE
from the TCB. We implement Zee and design and implement
secure versions of garbage collectors and thread schedulers using
Zee. We also prove that a faithful calculus of Zee satisfies a strong
variant of timing-sensitive noninterference.

I. INTRODUCTION

Modern programming languages offer many abstraction
mechanisms to simplify the development of programs, increase
their throughput, or reduce their resource consumption at
runtime. Such abstractions are often implemented by compiler
writers in a specialized program called the runtime environment
(RTE). A runtime environment is a program (possibly written in
a different language) that is running alongside programs written
by the user, and may use knowledge about the implementation
details of the language to perform its tasks. Examples of
features commonly associated with the RTE include thread
scheduling and automatic memory management. For a user of
the language, implementing such functionality is difficult as it
often requires breaking abstractions enforced by the language
designer, and careful reasoning must be done by the developers
of the runtime environment to ensure that the guarantees offered
by the language are not violated by the runtime environment.
For instance, a garbage collector must determine which heap
allocations are reachable by following pointers through the
heap, starting from a set of root pointers. Root pointers typically
include the local variables stored on the call stack, and thus the
RTE must traverse every stack frame currently stored on the
call stack, potentially breaking local state encapsulation [30].
Even worse is the situation from a security perspective, where
operations carried out by an RTE might reveal confidential
information about the data handled by the user-written programs
through storage- or timing channels [24], [29], [32], [37].

Language-based information-flow control (IFC) is a popular
approach to solve the problem of ensuring integrity and
confidentiality of data [27]. This approach uses programming
language techniques to analyze information flows in potentially
untrusted programs before and/or during their execution, and
verifies that the execution does not leak sensitive information.

In this paper we design and implement Zee: an IFC
programming language for implementing secure runtime envi-
ronments. Zee supports secure and type-safe programming on
heterogeneous data (e.g., data at multiple security levels). We
also define a faithful calculus of Zee and prove that well-typed
programs satisfy timing-sensitive noninterference.

The calculus and its implementation are defined over an
abstract instantiation language, which allows for Zee to be
extended with additional features without redoing many of the
formal proofs. Instead, each instantiation must only prove that
a certain semantic interface is satisfied.

In summary, this paper makes the following contributions:

• It identifies access to the call stack and runtime type
analysis as core features necessary for a practical language
for programming runtime environments.

• It presents the design and implementation of Zee: an
extensible language for implementing RTEs, and proves
that the combination of Zee’s type system and runtime
semantics enforces timing-sensitive noninterference.

• It uses Zee’s extensible semantics to design and implement
a secure garbage collector, and a secure thread scheduler.

The rest of the paper is structured as follows: Section II
gives an introduction to Zee through examples, and Section III
formally defines the syntax and semantics of Zee. Section IV
formalizes the attacker model and the security guarantees
enforced by Zee’s type system. Section V presents two case
studies on how Zee can be used to implement well-typed (and
hence secure) garbage collectors and thread schedulers. Sec-
tion VI describes the implementation of Zee, and Section VII
discusses related work. The Appendix contains full definitions
and the accompanying technical report contains full proofs.

II. PROGRAMMING IN ZEE

This section introduces Zee using three example programs.
The first example demonstrates how Zee uses existentially
quantified type variables to compute securely on values with
different security levels located in the same data structure.1 The
second example demonstrates how a similar technique can be
used to securely inspect the call-stack at runtime. Finally, the
third example demonstrates how Zee uses implicit revocation
of expired pointers to prevent reuse of invalidated memory.

1This example uses a specific instantiation language defined in Section V-A.

A. Computing on heterogeneous values

The first example uses a simple two-point lattice consisting
of two elements L and H with the partial order L v H, and
LtL = L and `1 t `2 = H otherwise. We call L the “public”
level and H the “secret” level. We use a level-partitioned heap
[24] and so, in the two-point lattice, the heap consists of
two partitions that we denote as the L partition and the H
partition. As is standard for type systems for security, types
are augmented with security levels, i.e., the type intH is the
type of integers at security level H.

The type system also tracks which partitions pointers point
into. The type (`1 7→ s)`2 describes pointers that point into
the `1 section, containing data of type s, and where the size
of the allocation depends on information up to level `2.

Zee uses existential types [36] and runtime type analysis
[12] for secure handling of heterogeneous data. Traditional
existential types are written as ∃α : type. s, and a value
of type ∃α : type. s is a pair (τ, v) where τ is a runtime
representation of a type,2 and v is a value of type s[τ/α].
That is, v is of type s, but where the free type variable α
has been replaced by τ . A value of an existential type can be
introduced using the expression pack (s, e) as ∃α : type. s,
which evaluates s to τ and e to v before returning a pair (τ, v).
Dually, given an expression e of type ∃α : type. s, it can be
eliminated using the command let (α : type, x : s) := e in c,
that brings the type variable α, and the variable x into scope
for the evaluation of command c. For information-flow control,
the existential type is augmented with security levels, and a
value (τ, v) is of type (∃α : type`1 . s)`2 if τ depends only on
information up to level `1. Introduction and elimination rules
are augmented accordingly as pack (s, e) as ∃α : type`1 . s,
and let (α : type`1 , x : s) := e in c respectively. We call the
latter command an unpacking command.

Figure 1 shows a Zee function compute that, given an array
xs with elements of different security types, computes the sum
of all the public integers in the array, revealing no information
about the secret values in xs. The array xs is annotated with
the type (L 7→ (∃α : typeL. α)L)L, representing an array of
heterogeneous data in the L partition of public length.

Function compute also specifies two additional labels (both
of which are L in this example): the bottom label is a lower
bound on the program counter label, which is classic in IFC
literature [21]. The top label is novel: it represents an upper
bound on the sensitivity of the information that can be learned
by knowing the type of a local variable in the current activation
frame. We defer the discussion of this label until Section III-C.

On lines 5 to 9, function compute loops over the elements
of xs, and on lines 6 and 7 it extracts the witness α and the
value of type α. On line 8 the code performs runtime type
analysis on the value of α, and it matches the pattern intL (i.e.,
the type of public integers). In this branch on line 8 the value
y is known to be of type intL, and can be added to the public
variable sum, without leaking sensitive information. Finally,

2The value τ is often called the witness of the type s.

1 compute(xs : (L 7→(∃α:typeL . α)L)L) =L
L

2 let n : intL := length xs in
3 let i : intL := 0 in
4 let sum : intL := 0 in
5 while i < n do
6 let x : (∃α:typeL . α)L := *(xs + i) in
7 let (α : typeL, y : α) := unpack x in
8 match α with intL ⇒ sum := sum + y
9 | _ ⇒ skip;

10 i := i + 1

Fig. 1: Zee program demonstrating computations on heteroge-
neous values.

if α is of any other type, this value is omitted from the final
sum.

This example demonstrates how Zee securely computes on
heterogeneous values using existential types and runtime type
analysis. In the next example, we extend such use of existential
types to access the call stack while guaranteeing type-safety
and security. We do this by treating the frame pointer as a
pointer to an array of existentially quantified types, similar to
the type of xs in Figure 1. For the remaining examples in the
paper we elide some type annotations, but all of the missing
type annotations are inferred by our prototype implementation
of Zee.

B. Computing on the call-stack

Zee allows fine-grained reasoning about the call stack, which
is important for operations such as stack traversal for many
garbage collection algorithms, or unwinding the stack to handle
exceptions. Figure 2 shows the structure of the call stack during
an execution with two activation frames belonging to functions
g and f respectively. Function g pushes two arguments on
the stack: a value of type (H 7→ intH)H, and a value of type
intH, and then invokes f . Function f then establishes a new
frame by pushing the value of the old frame pointer onto the
stack, so that the previous frame can be restored upon returning
from f . Furthermore, f modifies the frame pointer to point
to its local variables, and modifies the stack pointer to point
to the next free address on the stack. Finally, f allocates its
local variables and proceeds with computation in the newly
established activation frame.

As Zee features runtime type analysis, which is crucial for
the implementation of many useful programming language
features, the types themselves must be protected using security
labels. To accomplish this, we introduce the notion of a frame
label fr , which represents an upper bound on the sensitivity
of the information that can be learned by knowing the type of
a local variable in the current frame.

In Zee the expression FP returns a pointer to the beginning
of the current activation frame. The type assigned to FP is a
recursive type,3 that reflects the layout of the stack (cf. Figure 2)
and contains the types of the function parameters and local
variables.

3We will explain the precise typing of the frame pointer in detail in
Section III-C.

2

1 f(p : (H 7→ intH)H, h : intH) =H
L

2 let a : intL := 0 in
3 let b : (L 7→ intH)L := null in
4 let c : intH := h in skip
5 g() =H

L ...; f(null, 42); ...
6

f

g

intH
<latexit sha1_base64="7kBcjhX9gGsQGXPWrrjfxXg+qvw=">AAACE3icbVBNS8NAEN3Ur1q/qh69BIsgHkpSBT0WvfRYwbZCU8pmM2mXbj7YnYgl5D948a948aCIVy/e/Ddu0wra+mDh8d7MzsxzY8EVWtaXUVhaXlldK66XNja3tnfKu3ttFSWSQYtFIpK3LlUgeAgt5CjgNpZAA1dAxx1dTfzOHUjFo/AGxzH0AjoIuc8ZRS31yydOQHGo/JSHmPVTB+Ee819TCV6W/riNLMv65YpVtXKYi8SekQqZodkvfzpexJIAQmSCKtW1rRh7KZXImYCs5CQKYspGdABdTUMagOql+fTMPNKKZ/qR1C9EM1d/d6Q0UGocuLoy33Hem4j/ed0E/YuePjdOEEI2HeQnwsTInARkelwCQzHWhDLJ9a4mG1JJGeoYSzoEe/7kRdKuVe3Tau36rFK/nMVRJAfkkBwTm5yTOmmQJmkRRh7IE3khr8aj8Wy8Ge/T0oIx69knf2B8fANYt6BW</latexit>

intH
<latexit sha1_base64="7kBcjhX9gGsQGXPWrrjfxXg+qvw=">AAACE3icbVBNS8NAEN3Ur1q/qh69BIsgHkpSBT0WvfRYwbZCU8pmM2mXbj7YnYgl5D948a948aCIVy/e/Ddu0wra+mDh8d7MzsxzY8EVWtaXUVhaXlldK66XNja3tnfKu3ttFSWSQYtFIpK3LlUgeAgt5CjgNpZAA1dAxx1dTfzOHUjFo/AGxzH0AjoIuc8ZRS31yydOQHGo/JSHmPVTB+Ee819TCV6W/riNLMv65YpVtXKYi8SekQqZodkvfzpexJIAQmSCKtW1rRh7KZXImYCs5CQKYspGdABdTUMagOql+fTMPNKKZ/qR1C9EM1d/d6Q0UGocuLoy33Hem4j/ed0E/YuePjdOEEI2HeQnwsTInARkelwCQzHWhDLJ9a4mG1JJGeoYSzoEe/7kRdKuVe3Tau36rFK/nMVRJAfkkBwTm5yTOmmQJmkRRh7IE3khr8aj8Wy8Ge/T0oIx69knf2B8fANYt6BW</latexit>

intL
<latexit sha1_base64="j0tPfYbrzQ3kX5JEAzVAtxGIN2Q=">AAACFHicbVDLSsNAFJ34rPVVdekmWARBKEkVdFl048JFBfuANoTJ9KYdOnkwcyOWkI9w46+4caGIWxfu/BunaQVtPTBwOOfeufceLxZcoWV9GQuLS8srq4W14vrG5tZ2aWe3qaJEMmiwSESy7VEFgofQQI4C2rEEGngCWt7wcuy37kAqHoW3OIrBCWg/5D5nFLXklo67AcWB8lMeYuamXYR7zH9NPZFAlv7Y11mWuaWyVbFymPPEnpIymaLulj67vYglAYTIBFWqY1sxOimVyJmArNhNFMSUDWkfOpqGNADlpPn4zDzUSs/0I6lfiGau/u5IaaDUKPB0Zb7jrDcW//M6Cfrnjr43ThBCNhnkJ8LEyBwnZPa4BIZipAllkutdTTagkjLUORZ1CPbsyfOkWa3YJ5XqzWm5djGNo0D2yQE5IjY5IzVyReqkQRh5IE/khbwaj8az8Wa8T0oXjGnPHvkD4+MbO0Kg0Q==</latexit>

(H 7! intH)H
<latexit sha1_base64="W6s4W8/RFiEcSUqVsj9xaawXgCA=">AAACV3icfVFNSwMxEM1uq9b61erRS7AIeim7Kuix6KXHCrYV2lKy6awGs9klmRXLsn9SvPSveNF0W0Gt+CDweG8mM3kJEikMet7McUvltfWNymZ1a3tnd69W3++ZONUcujyWsb4PmAEpFHRRoIT7RAOLAgn94Olm7vefQRsRqzucJjCK2IMSoeAMrTSuqZMhwgsWF2UaJnk2jBg+mjBr5zm1PDEY0y9NKMzH2T8d+en/9rjW8JpeAbpK/CVpkCU649rrcBLzNAKFXDJjBr6X4ChjGgWXkFeHqYGE8Sf2AANLFYvAjLJiek6PrTKhYaztUUgL9XtHxiJjplFgK4sdf3tz8S9vkGJ4NbJpJCmC4otBYSqpjWoeMp0IDRzl1BLGtbC7Uv7INONov6JqQ/B/P3mV9M6a/nnz7Pai0bpexlEhh+SInBCfXJIWaZMO6RJO3si7U3LKzsz5cNfdyqLUdZY9B+QH3PonTFS57w==</latexit>

(L 7! intH)L
<latexit sha1_base64="i0fkifZ82tDojzSyqRJpzYDbmxU=">AAACWXicbVFNSwMxEM2uttb6Ve3RS7AIeim7VdBj0UsPHhSsCm0p2XS2Dc1+kMyKZcmf9CCIf8WD6Vrxow4EHu/lzUxeglQKjZ736rgrq6XyWmW9urG5tb1T292700mmOHR5IhP1EDANUsTQRYESHlIFLAok3AfTy7l+/whKiyS+xVkKg4iNYxEKztBSw1p61Ed4wqJRHsgMTN6PGE50mF8ZQy1ONSb0ixMxmmH+w6Jg9O3oGGOOf8lLHc2w1vCaXlF0GfgL0CCLuh7WnvujhGcRxMgl07rneykOcqZQcAmm2s80pIxP2Rh6FsYsAj3Ii/GGHlpmRMNE2RMjLdifjpxFWs+iwN4sdvyrzcn/tF6G4fnAxpFmCDH/HBRmktqs5jHTkVDAUc4sYFwJuyvlE6YYR/sZVRuC//fJy+Cu1fRPmq2b00b7YhFHheyTA3JEfHJG2qRDrkmXcPJC3p2SU3beXMetuNXPq66z8NTJr3LrHyfsueY=</latexit>

Tfp(. . .)
<latexit sha1_base64="lFlRyHwMKgkB6IE9g4sAvGiKcTI=">AAACCHicbVDLSsNAFJ3UV62vqEsXBotQNyWpgi6LblxW6AvaUCbTSTt0MgkzN0IJWbrxV9y4UMStn+DOv3GaRtDWAwOHc+5h7j1exJkC2/4yCiura+sbxc3S1vbO7p65f9BWYSwJbZGQh7LrYUU5E7QFDDjtRpLiwOO0401uZn7nnkrFQtGEaUTdAI8E8xnBoKWBedwPMIyVnzTTQfLD/ShNK/1hCOpsYJbtqp3BWiZOTsooR2NgfuogiQMqgHCsVM+xI3ATLIERTtNSP1Y0wmSCR7SnqcABVW6SHZJap1oZWn4o9RNgZervRIIDpaaBpyezVRe9mfif14vBv3ITJqIYqCDzj/yYWxBas1asIZOUAJ9qgolkeleLjLHEBHR3JV2Cs3jyMmnXqs55tXZ3Ua5f53UU0RE6QRXkoEtUR7eogVqIoAf0hF7Qq/FoPBtvxvt8tGDkmUP0B8bHN9btmns=</latexit>

Local
variables}
Function
parameters}
Old frame pointer

Stack pointer

Frame pointer

D
ire

ct
io

n
of

sta
ck

 g
ro

w
th

Fig. 2: Bottom: the structure of the call stack just before
executing skip in f . Top: two functions g and f .

To understand the need for the frame label, consider the
program in Figure 3, showing a function inspect that inspects its
own frame. Unlike the compute function, the inspect function
is parameterized by a secret label κ, which the caller provides
when invoking inspect. In this example, the first element of
the frame layout consists of an integer x with the security label
κ, as declared on line 2. Using the FP construct on line 3,
the type variable αargs is assigned a tuple type representing
the types of the arguments passed to inspect,4 and on line 4,
αlocals is assigned the types of the local variables of inspect.

As no arguments has been passed to inspect, the value of
αargs during execution is the unit type ε. The value of αlocals

is int`′ · τtail, where `′ is the value of κ that has been provided
when inspect was called, and τtail is the rest of the frame
layout. After obtaining the type of the local variables, line 5
performs a pattern match on αlocals, and if the pattern int` ·
matches the value of αlocals, it follows that `′ is equal to `,
which is information classified at H. So to track the indirect
flow from the label κ to the match command, we introduce
the frame label fr , which assigns αlocals the security level fr
(which is equal to H as declared by the inspect function),
properly tracking the dependency of κ in αlocals.

C. Fail-stop revocation of expired pointers

This section demonstrates how Zee uses a dynamic enforce-
ment technique to prevent the reuse of pointers that point to
“expired” data. Expired data include local variables of functions
that have returned control to its caller, or heap data that have
been reclaimed by a garbage collector. To do this we introduce
a technique similar to identifier-based temporal checking [22]
which we simply refer to as versioning. At runtime, every
pointer is assigned a natural number ν called the version
number. Similarly, every stack frame is assigned a version
number. When a pointer to a local variable on a stack frame
is created, the pointer is assigned the version number of that
stack frame. When reading data pointed to by a pointer with

4The unroll expression is needed as Zee uses isorecursive types to represent
the type isomorphism between µ α : type. s and s[µ α : type. s/α] (i.e.,
between a recursive type and its unrolling). We will omit unroll expressions
throughout the paper.

Tfp(…)
intκ

{

Local
variables

Old frame pointer

Stack pointer

Frame pointer

…

Di
re

ct
io

n
of

st

ac
k

gr
ow

th

1 inspect〈κ : levelH〉() : =H
L

2 let x : intκ := 42 in
3 let (αargs, e) := unpack (unroll FP) in
4 let (αlocals, _) := unpack e in
5 match αlocals with int` * _ ⇒ ... // κ = `
6 | _ ⇒ skip

Fig. 3: Bottom: Indirect information flow from κ to αlocals

when inspect inspects its own stack frame. Top: The activation
frame for function inspect.

version ν, the system checks that the stack frame, which is
read from, has a version number γ such that γ ≤ ν, ensuring
that this stack frame was “live”5 when the pointer was created,
and a similar check is done for writes through pointers.

Figure 4 demonstrates how an illegal flow could be con-
structed without versioning: on line 6, x is allocated on the
stack and initialized to null.6 Then, function f is called and
writes the address of its local variable y into x through the
passed pointer px on line 2. When f returns, the value of x is
a pointer, pointing to the local variable y from the “dead” stack
frame of f . Then, when g is called, the value of secret is
stored in h, which might be located in the same offset from the
base pointer as y was in function f (cf. lower part of Figure 4).
So when g reads x, the value of secret is stored in low,
violating the type ascribed to the variable.

Versioning prevents this leak by assigning a version number
ν ∈ N to x and the stack frame allocated on line 6. The stack
frames of f and g are assigned versions ν + 1 and ν + 2
respectively. When g reads from x, this variable has version
ν + 1, while the data it points to is located on g’s stack frame,
which has version ν + 2. This violates the version check and
execution stops, successfully preventing the leak.

III. LANGUAGE

This section presents a formalization of Zee. We assume a
lattice L of security levels with a least element ⊥ and let `
range over the elements of L.

A. Syntax

Figure 5 defines the grammar for Zee. We give an informal
description of each syntactic category, and delay the formal
semantics until Section III-B.

1) Commands: Commands c include standard constructs
for imperative languages. Non-standard commands include
commands ∗e := e and x := ∗e that respectively write to, and
read from, a location on the stack. Command at k e c raises
the program counter label for command c during type checking,

5A live stack frame refers to a frame of a computation that is still ongoing.
6For now the type @ s can be read as “pointer to a value of type s”, but

we will define a more general version of this type in Section III.

3

1 f(px : (@(@ intL)L)L) =L
L

2 let y : intL := 0 in *px := &y
3 g(z : (@ intL)L) =L

L

4 let h : intH := secret in
5 let low : intL := *z in skip
6 let x : (@ intL)L := null in f(&x); g(x)

y

px

f
h

z

g
low

Old frame pointer Old frame pointer

Local
variables}
Function
parameters}

Frame pointer

x x Local variables}
Fig. 4: Attempting to read x in function g will fail: The pointer
has been implicitly revoked when f no longer was live.

and also provides lightweight7 predictive mitigation [4], [41],
[42]. The match command allows for runtime type analysis
[1], [12], which is crucial for implementing many useful tasks
associated with the RTE. We call the α being matched on
the scrutinee, and the patterns are defined in the syntactic
category p. These include integer type patterns (intκ), stack
pointer type patterns ((p @ p)κ), heap pointer type patterns
((κ 7→ p)κ), product type patterns (p) and a “catch all” pattern
that names the type value (α). To facilitate traversing the stack
at runtime, the language exposes the frame pointer, which can
be obtained using the x := fp command. A function can be
invoked by supplying the function name with label8 parameters
k, type parameters s, and expression parameters e. Finally,
both existentially quantified labels and types can be eliminated
using the unpacking commands let (α : Xk, x : s) := e in c
for X ∈ {type, level}.

2) Expressions: The meta-variable e ranges over expressions
which include numbers, variables, binary operations, a special
pointer value null, and pack expressions for introducing
existentially quantified labels and types. We include recursive
types to give the language type-safe access to the call stack,
and expressions unroll e and roll e allow for simple (i.e.,
isorecursive) typing rules for recursive types [26]. The size of
a type can be calculated using the expression sizeof s, which is
also used to facilitate stack traversal. Finally, given a variable
x the address of x on the stack can be obtained as &x.

3) Security labels and types: The meta-variable k ranges
over security labels. As labels can be existentially and uni-
versally quantified, the category includes variables κ. Finally,
one can form the join t or meet u of two security labels,
representing the least upper bound, or greatest lower bound of
two labels respectively.

The meta-variable s ranges over security types and include
base types t with a security label k, written tk, type variables
α, or product types s. Base types are integers, heap pointers
(k 7→ s) representing a pointer into the heap partition associated

7In particular, the predicted time for mitigation commands is given by the
programmer, nor is it not automatically updated by the semantics.

8We distinguish between levels (i.e., elements of L) and labels (i.e.,
expressions that evaluate to elements of L)

c ::= skip | let x : s := e in c | if e c c
| while e c | c; c | x := e | ∗e := e
| x := ∗e | at k e c | if (k v k) c c

| match α p⇒ c | x := fp | f〈k〉〈s〉(e)
| let (α : typek, x : s) := e in c
| let (κ : levelk, x : s) := e in c

e ::= n | x | e⊕ e | null | unroll e | roll e
| pack (s, e) as ∃α : typek. s | sizeof s
| pack (k, e) as ∃κ : levelk. s | &x

k ::= ` | κ | k t k | k u k
s ::= tk | α | s
t ::= int | k 7→ s | s @ s | ∃α : typek. s
| ∃κ : levelk. s | µ α : typek. s | size[s]

p ::= intκ | (p @ p)κ | (κ 7→ p)κ | p | α

Fig. 5: The syntax of Zee.

with label k [24], stack pointers (s1 @ s2) representing
pointers to a value of type s2 that, on the stack, are located
“above” a value of type s1 [2], [25]. Base types also include
the type of existentially quantified security types and labels,
recursive types and singleton types [34] size[s] describing
the size of the type s. A function definition is given as
f〈κ : levelk1〉〈α : typek2〉(x : s) =fr

pc c that defines a function
f with label parameters κ, type parameters α, and value param-
eters x. Label parameter κi can depend on the previous label
parameters κ1, . . . ,κi−1, and type parameter αi can depend on
all label parameters and type parameters α1, . . . ,αi−1. Finally,
the types s for the expression parameters can depend on all
label and type parameters. Furthermore, pc is a lower bound
on the side effects produced by f , and fr is an upper bound
on the type of any local variable declaration. We revisit this
label in Section III-C.

B. Semantics

The semantics of Zee is given by a small-step relation →
on configurations C of the form 〈c,M, P, q〉ν . We first define
each component of the configuration before describing the
small-step relation.

1) Values: Figure 7 describes the syntax of values. A value v
is either a number n, an address a with a version number ν ∈ N,
a pair consisting of either a level and a value (`, v), or a security
type value and a value (τ, v). The meta-variable τ ranges over
security type values and is either a base type value π with a
security level `, or a product of security type values.

Security type values also include a nonsense [19] type
value . To motivate the need for nonsense type values, consider
the program in Figure 6. When evaluating FP on line 3, the
variable x with value 0 is in scope, but none of the variables
e, p or y have entered the scope, and their value on the stack
are “garbage” values. So αlocals is a product type intL · · ·
containing three nonsense type values as the variables e, p
and y have yet to enter the scope and be assigned a value.
The type variables αargs and αlocals live on a different stack
(cf. top right of Figure 6) where extracting type-information is
not possible, and therefore technically do not need a nonsense

4

1 let x : intL := 0 in
2 let (αargs, e) :=
3 unpack FP in
4 let (αlocals, p) :=
5 unpack e in
6 let y : intH := 0 in
7 skip

intL

Tfp(…)

e

p

x

…

y {

Local
variables

Old frame
pointer

Stack pointer

Frame pointer

αlocals

αargs

{Type and level
variables

Fig. 6: Left: the value of αlocals contains three nonsense type
values, corresponding to the three variables e, p and y that has
yet to enter the scope upon evaluating FP on line 3. Right: the
stack layout when FP is evaluated.

v ::= n | aν | (`, v) | (τ, v)
τ ::= π` | τ |
π ::= int | ` 7→ τ | τ @ τ | ∃α : type. s

| ∃κ : level. s | µ α : type. s | size[τ]

Fig. 7: Values in Zee.

type value, as we do not track “the type of type variables” at
runtime.

The meta variable π ranges over base type values, and contain
the same constructs as the base types, but where security labels
not under binders ∃ and µ are fully evaluated, and labels on
types and labels are erased (as they are only needed for type
checking).

2) Exposed and private stack frames: An exposed stack
frame m is a triple (I, |m|, ν) where |m| : I ⇀ v is a partial
function from a nonempty interval I ⊂ N to values, and a
frame version ν ∈ N. We call min (I) the frame pointer,
written fp(m), and max (I)+1 the stack pointer, written sp(m).
Intuitively, fp(m) is the minimum address in the stack frame,
corresponding to the usual notion of a frame pointer, and
similarly sp(m) is the address of the next available stack
location. Given an exposed stack frame m = (I, |m|, ν) we
write m[a 7→ v] to mean (I, |m|[a 7→ v], ν), and m(a) to mean
|m|(a). We call a list of exposed stack frames an exposed
stack M .

A private stack frame p is a triple of partial functions
(pvar, parg, plocal) where pvar : Var ⇀ L ∪ τ and parg, plocal :
Var ⇀ τ . Function pvar maps label- and type variables to
levels and type values, parg maps function arguments to their
security type, and plocal maps local variable names to their
security type. The name “private” refers to the fact that this
stack cannot be traversed and inspected at runtime (unlike the
exposed stack). Finally, a private stack P is a list of private
stack frames. We call a pair of an exposed and a private stack
(M,P) a stack.

We distinguish between exposed and private stacks because
Zee allows type-safe traversal of the exposed stack, but does
not directly expose the private stack to programs.

As exposed stack frames include mappings from (subsets
of) natural numbers, a translation from local variable names
to addresses is needed. This translation is usually performed
by a compiler, and many techniques exist for such translations

1 fib(n : intL, r : (@ intL)L) =L
L

2 if n <= 1 then *r := n
3 else let r1 : intL := 0 in
4 let r2 : intL := 0 in
5 fib(n-1, &r1); fib(n-2, &r2);
6 *r := r1 + r2

δ(x) =

2 if x = r2

1 if x = r1

−1 if x = r

−2 if x = n

⊥ otherwise

intL

intL

Tfp(…)
intL

{Local
variables

Stack pointer
Frame pointer

intL

…
n
r

r1

r2

{Function
parameters

δ

δ

δ

δ

Di
re

ct
io

n
of

 s
ta

ck
 g

ro
w

th

Fig. 8: Top: an implementation of a function fib for computing
a public Fibonacci number given a public input. Bottom right:
the stack frame layout for fib. Bottom left: the mapping δ
between local variable names and stack frame offsets.

[3]. We abstract away the specifics of such translations by
assuming a global mapping δ : Var → N from variables
names to offsets. Figure 8 demonstrates how a compiler might
generate a mapping δ that maps variable names to activation
frame offsets. At the moment we assume that the compiler
does not coalesce stack locations when the lifetimes of two
variables do not overlap. So given two local variables x 6= y it
holds that δ(x) 6= δ(y). That is, different variables are stored
at different locations on the stack. The expression δ(x)+ fp(m)
computes the address of the local variable x in the stack frame
fp(m).

3) Model of time: We represent time as a number q ∈ N
that counts the number of operational steps in the computation.
This simple model is sufficient to demonstrate that runtime
environment tasks can be computed in a timing-sensitive
security setting. Naturally, a realistic implementation would
need to soundly relate the operational steps with the wall-clock,
but that is outside of the scope of the current work.

4) Version counter: Finally, the configuration contains a
version counter that keeps track of the next free version number.
This is needed when constructing new stack frames, as each
new frame is given a fresh version number.

5) Big-step evaluation for expressions: The big-step eval-
uation for expressions is defined on configurations of the
form 〈e,m, p〉, where m is an exposed stack frame and
p is a private stack frame. The evaluation of expressions
need both the exposed, and the private stack frame, as both
expression variables and type- and level variables might
appear in expressions. Figure 9 shows excerpts of the big-step
evaluation semantics for expressions. Rule E-NUM evaluates
a literal, and E-VAR evaluates a variable by looking up its
value on the stack using the global mapping δ. Finally, rule
E-PACK-TY evaluates a pack expression containing a security
type s and an expression e to a pair (τ, v). The remaining
rules are found in the technical appendix [23].

6) Small-step relation for commands: Figure 10 shows an
excerpt of the small-step relation, and the full semantics is

5

E-NUM

〈n,m, p〉 ⇓ n
E-VAR
m(δ(x) + fp(m)) = v

〈x,m, p〉 ⇓ v

E-PACK-TY
〈s, p〉 ⇓type τ 〈e,m, p〉 ⇓ v

〈pack (s, e) as ∃α : typek. s
′,m, p〉 ⇓ (τ, v)

Fig. 9: Excerpts of the big-step evaluation of expressions.

in Figure 22 in the Appendix. Rule S-ASGN evaluates an
expression e and inserts the resulting value v in the memory at
offset δ(x) of the current frame pointer. Rule S-FP stores the
frame pointer in the variable x. In addition to the value of the
frame pointer fp(m), the value v contains the the list of types
cod(p.arg) of the arguments passed to the current function,
and the list of types cod(p.local) of the local variables. Rule
S-LET declares a new local variable x and (1) updates the
stack location to contain the initial value of x, and (2) updates
the private stack frame to contain type information about the
type of x. This causes the type value of the variable x to
be updated from a nonsense type value to a meaningful
type value τ , which is the result of evaluating the type s.
After executing c, a command unscope(x) removes the type
information of x from the private stack p.9 Rule S-UNPACK-TY
unpacks an existential value containing a security type value
and a regular value. Several maps are updated: the private
stack frame is updated to contain the security type value and
the type information about the newly allocated local variable.
Finally, the exposed stack frame is updated to contain the
regular value. Rule S-MATCH evaluates the scrutinee α to a
security type value and performs type analysis according to
a list of patterns p using the relation τ - p containing rules
such as int` - intκ and τ - α10 (i.e., integer patterns matches
integer types, and name patterns matches any security type
value). Upon finding the first (due to argmin) matching pattern
the private stack frame is updated by binding relevant parts
of the security type value to type variables, and execution
proceeds with the command associated with the pattern.

Rule S-READ reads from a stack location aγ . The version
number γ is used to prevent attacks based on pointer reuse
as was described in Section II-C. Dually, S-WRITE writes a
value v to an address a, requiring the same relation between
the versions of the target stack frame and the address being
read from.

Rules S-AT and S-DELAY implement simple predictive
mitigation of direct timing channels, i.e., channels represented
directly in the control-flow of the program: S-AT reduces
to the underlying command c, but ensures that the command
terminates in exactly n steps, where n is the result of evaluating
expression e, by delaying further commands until the command
delay n has terminated.

9The semantics of unscope is defined in the Appendix.
10The complete definition of matching is found in the Appendix.

S-ASGN
〈e,m, P 〉 ⇓ v m′ = m[δ(x) + fp(m) 7→ v]

〈x := e,m ·M,P, q〉ν → 〈stop,m′ ·M,P, q + 1〉ν
S-FP

v = (cod(p.arg), (cod(p.local), fp(m)ν))
m = (I, |m|, ν) m′ = m[δ(x) + fp(m) 7→ v]

〈x := fp,m ·M,p · P, q〉ν → 〈stop,m′ ·M,p · P, q + 1〉ν
S-LET

〈s, p〉 ⇓type τ 〈e,m, p〉 ⇓ v c′ = c; unscope(x)
m′ = m[δ(x) + fp(m) 7→ v] p′ = p[plocal 7→ plocal[x 7→ τ]]

〈let x : s := e in c,m ·M,p · P, q〉ν → 〈c′,m′ ·M,p′ · P, q + 1〉ν
S-UNPACK-TY

〈e,m, p〉 ⇓ (τ1, v2) 〈s, p′〉 ⇓type τ
p′ = p[var 7→ p.var[α 7→ τ1]]

p′′ = p′[local 7→ p′.local[x 7→ τ]]
m′ = m[δ(x) + fp(m) 7→ v2]

〈let (α : typek, x : s) := e in c,m ·M,p · P, q〉ν
→ 〈c; unscope(x),m′ ·M,p′ · P, q + 1〉ν

S-READ
mi = (I, |mi|, νi) ∈ m ·M a ∈ I νi ≤ γ
〈e,m, P 〉 ⇓ aγ m′ = m[δ(x) + fp(m) 7→ mi(a)]

〈x := ∗e,m ·M,P, q〉ν → 〈stop,m′ ·M,P, q + 1〉ν
S-WRITE
mi = (I, |mi|, ν) M = M1 ·mi ·M2 a ∈ I νi ≤ γ
〈e1,M, P 〉 ⇓ aγ 〈e2,M, P 〉 ⇓ v m′i = mi[a 7→ v]

〈∗e1 := e2,M, P, q〉ν → 〈stop,M1 ·m′i ·M2, P, q + 1〉ν
S-AT

〈e,M,P 〉 ⇓ n
〈at k e c,M,P, q〉ν →
〈c; delay n,M,P, q + 1〉ν

S-DELAY
n ≤ q

〈delay n,M,P, q〉ν →
〈delay n,M,P, n+ 1〉ν

S-MATCH
argmin
i=1,...,n

(τ - pi) = j 〈α, p〉 ⇓type τ JpjK(p, τ) = p′

〈match α (pi ⇒ ci)i=1,...,n,M, p · P, q〉ν
→ 〈cj ,M, p′ · P, q + 1〉ν

Fig. 10: Semantics of Zee: commands.

C. Type system

We now describe a type system for Zee, which we will
show ensures secure information-flow in Section IV. The
type system integrates previous work on type safety in stack-
based languages [2], [25] with dynamic security labels [44]
and existential types for information-flow control [36] into a
single language that is able to express complex indirect data
dependencies. The typing judgment for commands has the form
Γ,Π, φ, pc, fr ` c, and the typing judgment for expressions
has the form Γ,Π, φ ` e : s. We explain each component of
the judgment before presenting the judgment rules.

6

Function Γ : Var ⇀ s maps regular variable names to
security types, and similarly Π : Var ⇀ {type, level} × k
maps type variables to typek and label variables to levelk.
Formula φ is a finite conjunction of (possibly negated) flow
relations such as κ1 t κ2 v κ3 ∧ κ3 6v κ4. These formulas
are gathered during type-checking in such a way that the
constructed formulae always represents flows that will be true at
runtime. Adding such formulae to the typing relation improves
the expressiveness of static information-flow control in the
presence of dynamic security labels [16], [43], [44]. Finally,
the type system tracks two labels: the program counter label pc
and the frame label fr . We now explain the typing judgments
involved in typing Zee programs.

1) Typing judgment for expressions: Figure 11 shows
excerpts of the typing rules for expressions. Rules T-NUM
and T-VAR are standard rules for literals and variables, and
T-PACK-TY is the standard rule for introducing an existentially
quantified type [36]. Finally, rule T-SIZEOF assigns a singleton-
type size[s] to an expression sizeof s, representing that the
expression will evaluate to the size of the type s at runtime.
Such expressions are crucial for secure and type-safe operations
in a language with heterogeneous data like in Zee: they allow
the type system to track how pointer arithmetic changes the
type of the pointer. This becomes clear in rule T-BINOP,
which assigns types to the result of binary expressions using
the relation s1 J⊕K s2 ⇀ s. This states that applying operator
⊕ to expressions of type s1 and s2 results in an expression
of type s. The full judgment is shown in the Appendix, and
excerpts of this relation include

intk1 J⊕K intk2 ⇀ int(k1tk2) (1)
(s1 @ s · s2)k1 J+K size[s]k2 ⇀ (s1 · s @ s2)(k1tk2) (2)
(s1 · s @ s2)k1 J−K size[s]k2 ⇀ (s1 @ s · s2)(k1tk2) (3)

In words, performing a binary operation on two integers results
in an integer labeled with the join of the two labels (1), adding
the size of a type s to a pointer pointing to a value of type
s1 @ s · s2 results in a pointer to a value of type s1 · s @ s2,
and the labels are raised accordingly. Dually, one can subtract
the size of a type s from a pointer of type s1 · s @ s2, and
obtain a value of type s1 @ s · s2.

2) Typing judgment for commands: Figure 12 shows ex-
cerpts of the typing rules for commands. Rule T-LET states
that a variable declaration let x : s := e in c is well-typed if
the type of e is a subtype of s. The subtype relation is standard
for imperative languages for information-flow [21]. To prevent
implicit flows, the program counter label should also flow to
s. Finally, x is added to the typing context Γ, and the frame
label fr is raised to reflect the fact that the frame layout has
been influenced by the variable declaration.

Rule T-IF states that a command if e c1 c2 is well-typed
when e is an expression of type intpc , and both branches can
be shown to be well-typed. Readers familiar with IFC type
systems may wonder why it is necessary to restrict the label
on the type of e to be pc. This is done to facilitate predictive
mitigation of direct timing channels: the pc must be explicitly

T-NUM

Γ,Π, φ ` n : int⊥

T-VAR

Γ,Π, φ ` x : Γ(x)

T-PACK-TY
Π, φ `type s2 Γ,Π, φ ` e : s2[s1/x]

Π, φ `type s1 : k1 t = ∃x : typek1 . s2

Γ,Π, φ ` pack (s1, e) as t : t⊥

T-SIZEOF
Π, φ `type s : k

Γ,Π, φ ` sizeof s : size[s]k

T-BINOP
Γ,Π, φ ` ei : si
s1 J⊕K s2 ⇀ s

Γ,Π, φ ` e1 ⊕ e2 : s

Fig. 11: Excerpts of the typing rules for expressions.

raised using an at command. Rule T-AT states that a command
at k e c is well-typed when the label k and the computation
time e only depends on information up to pc. Furthermore,
the command must not lower the program counter label, and
the command c must be well-typed under the raised program
counter label k.

The command x := fp is well-typed when x is a subtype of
the type Tst(pc, fr , k), which abbreviates the type

(µ α : typek.

(∃β : typefr . (∃γ : typefr . (β · α @ γ)pc)⊥)⊥)⊥

This type reflects the layout of the stack at runtime (cf. Figure 2).
Each frame consists of some type β representing the type of
the arguments given to the function, followed by a pointer to
the previous stack frame (which is represented as the recursive
type variable α), and finally the type γ representing the types
of the local variables. By assigning each existentially quantified
type the label fr we ensure that no type leaks information, as
fr represents the upper bound of the information that can be
learned from knowing the value of the types.

Rule T-MATCH states when a command match α p⇒ c is
well-typed. First, α must be a type variable with a label that
flows to pc, as the direct timing channels must be controlled
using at commands. Judgment Π ` pi k Πi : si generates a
type variable environment Πi for type-checking the command
for the i’th pattern, and the type si to assign α in the command.
Furthermore, any type and label variable bound by the new
typing type variable environment Πi is bound to the label k.
Most of the rules of this judgment are of the form

Π ` intκ k Π[κ 7→ levelk] : intκ

which expresses that, in environment Π, when the pattern is
intκ and the scrutinee depends on information up to label k,
the environment is updated to Π[κ 7→ levelk] and the type of
the scrutinee can be assumed to have type intκ in the command
guarded by the pattern intκ. The full judgment can be found in
the technical report. Finally, each command ci is type-checked
in the generated type- and variable environment.

Rule T-UNPACK-TY states when an elimination of an

7

T-LET
Γ,Π, φ ` e : r Π, φ `type s : k φ ` rpc <: s

fr ′ = fr t k Γ[x 7→ s],Π, φ, pc, fr ′ ` c
Γ,Π, φ, pc, fr ` let x : s := e in c

T-AT
Π;φ `lab k : pc

Γ,Π, φ ` e : intpc φ ` pc v k Γ,Π, φ, k, fr ` c
Γ,Π, φ, pc, fr ` at k e c

T-IF
Γ,Π, φ ` e : intpc

Γ,Π, φ, pc, fr ` ci i = 1, 2

Γ,Π, φ, pc, fr ` if e c1 c2

T-FP
Π;φ `lab fr : k

φ ` Tst(pc, fr , k)pc <: Γ(x)

Γ,Π, φ, pc, fr ` x := fp

T-MATCH
Π(α) = typek φ ` k v pc Π ` pi k Πi : si

Γ[si/α],Πi[si/α], φ, pc, fr ` ci[si/α]

Γ,Π, φ, pc, fr ` match α p⇒ c

T-UNPACK-TY
Γ,Π, φ ` e : (∃α : typek1 . r)pc φ ` rpc <: s

Γ′ = Γ[x 7→ s] Π′ = Π[α 7→ typek1] Π′, φ `type r : k2
fr ′ = fr t k1 t k2 Γ′,Π′, φ, pc, fr ′ ` c

Γ,Π, φ, pc, fr ` let (α : typek1 , x : s) := e in c

T-FLOWSTO
Π;φ `lab ki : pc Γ,Π, φ ∧ k1 v k2, pc, fr ` c1

Γ,Π, φ ∧ k1 6v k2, pc, fr ` c2
Γ,Π, φ, pc, fr ` if (k1 v k2) c1 c2

Fig. 12: Excerpts of the typing rules for commands.

existentially quantified type is well-typed. The rule follows
previous work on existential types for security-typed languages
[36]: the type r, in which α may appear free, must be a subtype
of the declared type s, and to prevent implicit flows the program
counter label must also flow to the label on s. Furthermore,
the frame label is raised to reflect that two new variables, each
of which has a type that may depend on sensitive information,
is now part of the frame layout. Finally, the command is type-
checked in the updated environments with the raised frame label.
Rule T-FLOWSTO branches on the runtime relation between
the two labels k1 and k2. Each command is checked in the
extended formula capturing whether k1 v k2 holds at runtime.

3) Typing judgment for types and labels: The typing
judgments for security types and labels are straightforward.
Figure 13 shows an excerpt of the typing judgment for security
types, and the judgment for labels is similar. Rule T-INT says
that, if the label k depends on information up to label k′ then
intk depends on information up to label k′ as well. Rule T-MU
states that a recursive type (µ α : typek1 . s)k2 depends on
information up to label k if, assuming α depends on information
up to label k, the type s can be shown to depend on information
up to k and finally, both k1 and k2 must also not depend on
information above k.

T-INT
Π;φ `lab k : k′

Π, φ `type intk : k′

T-MU
φ ` k1 v k

Π[α 7→ typek];φ `lab s : k
Π;φ `lab k1 : k Π;φ `lab k2 : k

Π, φ `type (µ α : typek1 . s)k2 : k

Fig. 13: Excerpts of the typing relation for security types.

S-LIFT
〈c,M, P, q〉ν → 〈c′,m′, P ′, q′〉ν′

〈c,M, P, h, q〉ν → 〈c′,m′, P ′, h, q′〉ν′

S-INST
〈c,M, P, h, q〉ν → 〈c′,M ′, P ′, h′, q′〉ν′

〈c,M, P, h, q〉ν → 〈c′,M ′, P ′, h′, q′〉ν′

T-INST
Γ,Π, φ, pc, fr ` c
Γ,Π, φ, pc, fr ` c

Fig. 14: Extending Zee with rules for modular extensions of
the reduction semantics and the typing judgment.

D. An extensible language

To allow the specification of additional operations in Zee,
we include a hole [·] command:

c ::= · · · | [·]
We call the language without the hole construct the base
language, and the additional commands the instantiation
language. We let c range over commands in the instantiation
language, and write C for the set of commands in the base
language. Given an instantiation language D we write C[D]
for the set containing commands from both the base language
and the instantiation language.11

We add a heap to the configuration, which can be modified
by the instantiation language. A heap is a partial mapping
h : A⇀ v from addresses to values. We write dom(h) for the
set of addresses currently allocated in h. We add an additional
rule, S-LIFT, that lifts the semantics of base commands to
configurations that include a heap.

Finally, we add a rule for specifying semantics of commands
in C[D]: rule S-INST delegates reduction steps to the small-
step semantics of the instantiation language. The new rules
are shown in Figure 14. We extend the typing judgment with
an additional rule T-INST that delegates typing to the typing
relation for the instantiation language using the typing judgment
` provided by the instantiation language.

IV. SECURITY GUARANTEES

In this section we formalize the security guarantees obtained
by adhering to the type system described in Section III-C. Sec-
tion IV-A defines the attacker model, and Section IV-B specifies
the semantic interface that each instantiation language must
satisfy. Finally, Section IV-C defines termination-insensitive
timing-sensitive noninterference (TINI) [8], [24] and shows
that well-typed programs satisfy TINI.

11Section IV-B formally defines the notion of an instantiation language.

8

ev ::= ε | asgn(x← v, q) | rd(x← v, q) | [·]
| unp(`, x : τ ← v, q) | let(x : τ ← v, q)

Fig. 15: Grammar for events.

A. Attacker model

To precisely define the security condition we introduce
an augmented semantics that adds observable events to the
reduction rules. We associate the attacker with a fixed level
A ∈ L, and now define what an attacker at level A can observe
and which values A can distinguish.

1) Events and event semantics: The grammar of events is
shown in Figure 15. We assume that only commands that
modify the stack generates an event, but nothing fundamental
prevents adding a more fine-grained syntax of events. Event
asgn(x← v, q) contains the variable x assigned to, along with
the value v assigned to x, and the time q of when the assignment
happened. Similarly, rd(x← v, q) describes obtaining a value
v from the stack by reading a pointer, and assigning the value
to variable x at time q. Event unp(`, x : τ ← v, q) describes
an unpack command that declares a type (or level) variable at
security level `, and a variable of type τ with the initial value
v at time q. Event let(x : q ← v, q) describes the declaration
of a regular variable x of type τ with initial value v at time q.

As our events capture the time at which the events are
emitted, our definition of noninterference is timing-sensitive.
Finally, like commands, the language of events can be extended
with instantiation events using a hole construct [·], and we
write the events of the instantiation language as ev .

We denote by ẽv an event tuple of the form (ev ,Γ, P) where
Γ is the typing environment and P is the private stack, and we
define an event semantics ẽv−→ over configurations that emits
event tuples. Finally, we write t−→

∗
for the reflexive, transitive

closure of the event semantics relation that concatenates all
event tuples into a trace t.

2) Attacker observability: Given some level A ∈ L we say
that τ` is observable toA if ` v A, and invisible toA otherwise.
We lift observability to events as follows: given an event ev
we write Γ, P ` ev v A if A can observe event ev given
typing environment Γ and private stack P . We write ẽv v A
if ẽv = (ev ,Γ, P) and Γ, P ` ev v A. Section IV-B places
restrictions on the instantiation events which are necessary for
the nonintereference theorem to hold.

3) Attacker equivalence: We say two values vi : τi for
i = 1, 2 are A-equivalent given private stacks frames p1 and
p2, written p1, p2 ` v1 =A v2 : τ1 × τ2, if an attacker A is
unable to distinguish them.

We lift A-equivalence of values to A-equivalence of events
and write Γ | p1, p2 ` ev1 =A ev2 when events ev1 and ev2

are A-equivalent. The typing environment Γ is needed in the
judgment to associate a type with the variable x in the case of
an assignment event asgn(x← v, q). All judgments are spelled
out in the technical appendix.

Given a trace t, Figure 16 defines the A-projected trace btcA
containing only A-observable events. We say two traces t1 and

bεcA = ε bẽv · tcA =

{
ẽv · btcA ẽv v A
btcA otherwise

Fig. 16: A-projected trace.

t2 are A-equivalent, written t1 =A t2, if bt1cA and bt2cA
are pairwise A-equivalent. Finally, given two pairs of exposed
and private stack frames (pi,mi) we write Γ ` (p1,m1) =A
(p2,m2) when an attacker A is unable to distinguish their
content.

We extend this judgment pointwise and obtain an A-
equivalence on exposed and private stacks, which we write as
Γ ` (P1,M1) =A (P2,M2).

B. Specification of an instantiation language

In this section we describe the specification that an instan-
tiation language must satisfy. To define the requirements of
the instantiation language, we define an augmented small-step
semantics Γ,Π, φ, pc, fr ` C → C ′ : Γ′,Π′, φ′, pc′, fr ′. This
relation specifies that C steps to C ′ and updates the typing
environments Γ, Π, constraints φ and labels pc and fr to Γ′,
Π′, φ′, pc′ and fr ′ respectively. We lift this relation to the
event semantics relation and write Γ,Π, φ, pc, fr ` C

ẽv−→
C ′ : Γ′,Π′, φ′, pc′, fr ′ when event tuple ẽv is emitted when
evaluating Γ,Π, φ, pc, fr ` C → C ′ : Γ′,Π′, φ′, pc′fr ′. A
well-formedness relation Γ,Π, φ � C in the technical report
formalizes well-formed configurations, and given a private
stack P and a constraint formula φ relation P � φ specifying
that φ is true when evaluating all labels in φ in the private
stack P .

Formally, an instantiation language D is a tuple 6-tuple
(c,→,`, ev ,=A,v) where c is a set of syntactically valid
commands, relation→ is a small-step relation on configurations,
and ` is a typing judgment. The set ev contains syntactically
valid events, and relations Γ | p1, p2 ` ev1 =A ev2 and
φ, P ` ev v A defines when two events ev1 and ev2 are
considered equivalent by an attacker at level A, and when an
event is observable to a A respectively.

For the following properties, let c be a command c such
that Γ,Π, φ, pc, fr ` c, and let (M,P) and h be a stack and
a heap such that Γ,Π, φ � 〈c,M, h, P, q〉ν and P � φ. The
following three properties must then be satisfied:

Property 1 (Single-run reduction properties). If

Γ,Π, φ, pc, fr ` 〈c,M, h, P, q〉ν →
〈c′,M ′, h′, P ′, q′〉ν′ : Γ′,Π′, φ′, pc′, fr ′

it holds that Γ ⊆ Γ′, Π ⊆ Π′, ν ≤ ν′, and φ′ =⇒ φ. Finally
it holds that Γ′,Π′, φ′ � 〈c′,M ′, h′, P ′, q′〉ν′ , P ′ � φ′ and
Γ′,Π′, φ′, pc′, fr ′ ` c′.

Property 1 formalizes the type-safety requirements of the
instantiation language. Intuitively, the semantics of the instan-
tiation language should preserve well-formedness of config-
urations (i.e., Γ′,Π′, φ′ � 〈c′,M ′, h′, P ′, q′〉ν′). Furthermore,
the semantics should not prevent future use of variables that

9

are already in scope by removing them from the typing
environments Γ′ or Π′ (i.e., Γ ⊆ Γ′ and Π ⊆ Π′). To prevent
the possibility of reusing version numbers the version counter
ν′ should not decrease (i.e., ν ≤ ν′), and finally the semantics
must not weaken the constraint formula φ′ (φ′ =⇒ φ), but
should also not strengthen the formula to the point where it is
not guaranteed to hold at runtime (i.e., P ′ � φ′).

Property 2 (Single-step noninterference). If Γ ` (P1,M1) =A
(P2,M2) and φ ` pc v A and

Γ,Π, φ, pc, fr ` 〈c,Mi, hi, Pi, q〉ν
ẽv−→

〈c′i,M ′i , h′i, P ′i , q′〉ν′ : Γ′,Π′, φ′, pc′, fr ′

for i = 1, 2 then Γ′1 = Γ′2, Π′1 = Π′2, Γ′1 ` (P ′1,M
′
1) =A

(P ′2,M
′
2), q′1 = q′2 and Γ′1 | P ′1, P ′2 ` ẽv1 =A ẽv2.

Property 2 ensures that a command c in A-equivalent
environments results in A-equivalent observations for a single-
step.

Property 3 (Confinement). If φ ` pc 6v A and

Γ,Π, φ, pc, fr ` 〈c,M, h, P, q〉ν
ẽv−→

〈c′,M ′, h′, P ′, q′〉ν′ : Γ′,Π′, φ′, pc′, fr ′

then Γ ` (P,M) =A (P ′,M ′) and φ, P ` ev 6v A.

Property 3 ensures that the semantics does not leak sensitive
information through indirect flows. That is, when the reach-
ability of a program point depends on sensitive information
(i.e., φ ` pc 6v A), no A-observable event is emitted, and A
is unable to distinguish the environments before and after the
execution of c.

When properties 1, 2 and 3 are satisfied we say that the
instantiation language (c,→,`, ev ,=A,v) is a well-formed
instantiation language.

C. Security guarantees

Finally, we show that well-typed Zee programs satisfy
termination-insensitive timing-sensitive noninterference. This
definition permits attackers to learn information by observing
the termination-behavior of the program, but it does not permit
an attacker to learn information due to the timing-behavior
of terminating programs. This distinction between termination
and timing is unusual compared to previous literature where
timing-sensitivity implies termination-sensitivity [17] but in a
setting like ours, where a program can fail to terminate in many
different ways, i.e., by attempting to read invalid memory or by
non-exhaustive pattern matching, this definition is suitable [24].

Theorem 1 (Soundness). Let D be a well-formed instantiation
language and let c ∈ C[D], and let Γ,Π be typing environments.
Assume Γ,Π ` c and for all function definitions

f〈κ : k1〉〈α : k2〉(x : s) =fr
pc cf

it holds that Γf ,Πf ,>, pc, fr ` cf , where

Γf = {x 7→ s} Πf = {κ 7→ levelk1} ∪ {α 7→ typek2}.

If Γ ` (P1,M1) =A (P2,M2) and 〈c,Mi, Pi〉 ti−→
∗

for i = 1, 2
then t1 =A t2.

Theorem 1 states that, if each function definition is well-
typed, and the command c is well-typed, then executing c with
two A-equivalent stacks will result in A-equivalent traces t1
and t2.

V. CASE STUDIES

This section presents two case studies demonstrating realistic
activities of a runtime system for a modern programming
language. Both case studies, and all programs presented in the
paper, are executable using our prototype implementation.

The first case study is an implementation of a segregated
garbage collector (GC) that splits the heap into partitions
indexed by security levels from a fixed lattice [24]. The
algorithm is a modified version of a mark-and-sweep collector
[13], and to the best our knowledge, is the first GC algorithm
that implements the abstract semantics formally proven secure
in [24]. The security property obtained from the well-typedness
(Theorem 1) of the GC implementation implies that the timing
behavior of the garbage collector does not depend on the
memory operations caused by handling sensitive information.

The second case study is an implementation of a simple
cooperative thread scheduling algorithm. The security property
obtained from the well-typedness of the thread scheduler
implies that the scheduling of “public threads” is independent
from the presence of threads spawned due to handling of
sensitive information.

The programs in the case studies use a syntax more suitable
for programming compared to the formal language, but it can
be desugared into the core calculus presented in Section III.

A. Secure garbage collection

The job of a GC is to reclaim memory that will not be
used in the future by the program. This property is in general
undecidable, and GC algorithms instead only reclaim memory
that is not reachable by the program. The GC implementation
is split into two phases: The marking phase and the sweeping
phase. The marking phase starts when the RTE decides that
a GC is needed. Our GC implementation is a stop-the-world
collector: it stops the execution of the program and marks
every heap allocation that is currently reachable by the program.
Guaranteeing security and type-safety for such an operation is
nontrivial as data of different types, and with different security
policies, must be traversed and handled differently depending
on the base type of the value, and its security label.

We proceed by defining the syntax of an instantiation
language MS : a language for implementing secure mark-
and-sweep garbage collectors. We then define the small-step
semantics and the typing relation of MS . Finally, we show that
MS is a well-formed instantiation language (cf. Section IV-B).

1) The instantiation language MS : We instantiate Zee with
the instantiation language MS , whose commands are shown in
Figure 17. We assume an operation on `-indexed partitioning
of the heap and write A � ` for the set of addresses belonging
to security level `.

10

c ::= mark e | x := is marked e | free e | x := length e
| x := alloc(e, e, s, k, k) | x := start k | x := next e
| x := read(e) | write(e1, e2)

Fig. 17: Instantiation language for mark-and-sweep garbage
collection.

Command mark e marks a heap address, representing the
information that the address is reachable in the heap. Command
x := is marked e checks if an address, given by the evaluation
of e, has previously been marked, and stores this information
in variable x. Command free e reclaims the memory pointed
to by e, and x := alloc(e1, e2, s, k1, k2) allocates e1 number
of entries, all initialized to the value e2, in the heap partition
associated with the security level k2, and where the label k1
denotes the sensitivity of the size of the allocation. Command
x := length e stores the length of an allocation pointed to
by e in variable x. The final two commands are used in
the sweep phase, and implement an abstract notion of heap
parsability [13]: command x := start k stores a pointer to the
first allocation in the heap partition associated with the security
level k in variable x, and x := next e stores the next pointer
in the same heap partition as e (i.e., the allocation with the
smallest address that is larger e) in variable x.

Figure 19 shows the small-step semantics for allocation in
MS . A heap allocation of size n is structured as follows:

mark version meta data

a a + 1 a + 2 a + 3, …, a + 3 + n - 1

That is, the first address stores the mark of the allocation, which
is used during the marking phase of garbage collection to denote
that the allocation is reachable by the program. Next to the
mark is the version entry, which ensures that it is not possible
to read stale values from the heap when addresses are reused.
This is similar to the technique described in Section II-C for
values stored on the exposed stack. The meta field stores type
and label information using existentially quantified labels and
types: Specifically, a value of type ∃κ : level`. ∃α : type`. intκ
is stored. Here, the level ` is the index of the partition in which
the allocation is stored on the heap. The label κ stores the
security label on the size of the array, which is used during the
sweep phase, and the type α stores the type information about
the type of elements in the array, which is used to traverse the
heap during the marking phase, and the integer with security
label κ stores the length of the allocation. Finally, the data of
the array is stored at the end.

Rule S-ALLOC allocates such a data structure on the heap.
First, an address a is found such that the range a, . . . , a+n+2
is free (i.e., not part of the domain of the heap). A pointer to
the first element of the array is then stored in stack variable
x, and the address is given a fresh version count. Finally,
the allocation structure is stored on the heap, and the version
counter is incremented.

The version number in each allocation prevents leaks caused
by dangling pointers and aliasing. To see an example of this,

1 let p : (L 7→ intL)L := null in
2 p := alloc(10, 0, intL, L, L);
3 free(p);
4 let q : (L 7→ intH)L := null in
5 q := alloc(10, h, intH, L, L)

⌫ + 1
<latexit sha1_base64="cxNsgPzhtXmnlZ4rb0yhK+p2EVI=">AAAB7nicbVA9SwNBEJ2LGmP8ilraLAZBEMKdjZYBG8sI5gOSI+xt9pIle3vH7pwQjoB/wcbCD2z9PXb+EHs3lxSa+GDg8d4MM/OCRAqDrvvlFNbWN4qbpa3y9s7u3n7l4LBl4lQz3mSxjHUnoIZLoXgTBUreSTSnUSB5Oxhfz/z2PddGxOoOJwn3IzpUIhSMopXaPZWSc+L1K1W35uYgq8RbkGq9+Pr9AACNfuWzN4hZGnGFTFJjup6boJ9RjYJJPi33UsMTysZ0yLuWKhpx42f5uVNyapUBCWNtSyHJ1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldsvihMJcGYzH4nA6E5QzmxhDIt7K2EjaimDG1CZRuCt/zyKmld1Dy35t3aNOowRwmO4QTOwINLqMMNNKAJDMbwCM/w4iTOk/PmvM9bC85i5gj+wPn4AQtpkOw=</latexit><latexit sha1_base64="ISSNL5xh3ZE1DvRao2Fz4xcCq5A=">AAAB7nicbVA9SwNBEJ2LJsb4FbW0WQyCIIQ7Gy0DNpYRzAckR9jbzCVL9vaO3T0hHGntbSz8wNbCX2PnD7F381Fo4oOBx3szzMwLEsG1cd0vJ7e2ni9sFDdLW9s7u3vl/YOmjlPFsMFiEat2QDUKLrFhuBHYThTSKBDYCkZXU791h0rzWN6acYJ+RAeSh5xRY6VWV6bkjHi9csWtujOQVeItSKVWePmWH/f5eq/82e3HLI1QGiao1h3PTYyfUWU4EzgpdVONCWUjOsCOpZJGqP1sdu6EnFilT8JY2ZKGzNTfExmNtB5Hge2MqBnqZW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6O+lzhcyIsSWUKW5vJWxIFWXGJlSyIXjLL6+S5nnVc6vejU2jBnMU4QiO4RQ8uIAaXEMdGsBgBA/wBM9O4jw6r87bvDXnLGYO4Q+c9x+TaZIR</latexit><latexit sha1_base64="ISSNL5xh3ZE1DvRao2Fz4xcCq5A=">AAAB7nicbVA9SwNBEJ2LJsb4FbW0WQyCIIQ7Gy0DNpYRzAckR9jbzCVL9vaO3T0hHGntbSz8wNbCX2PnD7F381Fo4oOBx3szzMwLEsG1cd0vJ7e2ni9sFDdLW9s7u3vl/YOmjlPFsMFiEat2QDUKLrFhuBHYThTSKBDYCkZXU791h0rzWN6acYJ+RAeSh5xRY6VWV6bkjHi9csWtujOQVeItSKVWePmWH/f5eq/82e3HLI1QGiao1h3PTYyfUWU4EzgpdVONCWUjOsCOpZJGqP1sdu6EnFilT8JY2ZKGzNTfExmNtB5Hge2MqBnqZW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6O+lzhcyIsSWUKW5vJWxIFWXGJlSyIXjLL6+S5nnVc6vejU2jBnMU4QiO4RQ8uIAaXEMdGsBgBA/wBM9O4jw6r87bvDXnLGYO4Q+c9x+TaZIR</latexit><latexit sha1_base64="lhvl636udXM9rmfJkxxYT1A4IF4=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMgCGHXix4DXjxGMA9IljA76U2GzM4u8xDCko/w4kERr36PN//GSbIHTSxoKKq66e6KMsG18f1vr7SxubW9U96t7O0fHB5Vj0/aOrWKYYulIlXdiGoUXGLLcCOwmymkSSSwE03u5n7nCZXmqXw00wzDhI4kjzmjxkmdvrTkigSDas2v+wuQdRIUpAYFmoPqV3+YMpugNExQrXuBn5kwp8pwJnBW6VuNGWUTOsKeo5ImqMN8ce6MXDhlSOJUuZKGLNTfEzlNtJ4mketMqBnrVW8u/uf1rIlvw5zLzBqUbLkotoKYlMx/J0OukBkxdYQyxd2thI2posy4hCouhGD15XXSvq4Hfj148GuNRhFHGc7gHC4hgBtowD00oQUMJvAMr/DmZd6L9+59LFtLXjFzCn/gff4A4waOlQ==</latexit>

(L, (intH, 10))
<latexit sha1_base64="B80KZQNRREcTvioFTcv1zBKICio=">AAACOXicbVDLSgNBEOz1bXxFPXoZFCGChF0vegx4ycFDBBOFJITZSa8Ozj6Y6RXDsr/lxb/wJnjQgxK8+gNONorPhoGa6uqZ6vITJQ257r0zMTk1PTM7N19aWFxaXimvrrVMnGqBTRGrWJ/53KCSETZJksKzRCMPfYWn/uXhqH96hdrIODqhQYLdkJ9HMpCCk6V65UalQ3hNxUOZr1LMs07I6cIE2VGe77LK501GlPeyb2KN/S9tPR+JPXdnp1fecqtuUewv8D7AVo0dDx8BoNEr33X6sUhDjEgobkzbcxPqZlyTFArzUic1mHBxyc+xbWHEQzTdrPCQs23L9FkQa3siYgX7fSLjoTGD0LfKwunv3oj8r9dOKTjo2qWTlDAS44+CVDGK2ShG1pcaBamBBVxoab0yccE1F2TDLtkQvN8r/wWtvarnVr1jm0YNxjUHG7AJFfBgH2pQhwY0QcANPMAzvDi3zpMzdF7H0gnnY2YdfpTz9g5pm7HX</latexit><latexit sha1_base64="bI9/eSynG3fY3oXkpkrQ9o+YjL8=">AAACOXicbVDLSgMxFM3UR2t9VV26CYpQQcqMILosuOnCRQu2FtpSMukdDc08SO6IZZjfcuNfuBPcuLAUt/6A6VSxPi4ETs49Nzn3uJEUGm37ycotLC4t5wsrxdW19Y3N0tZ2S4ex4tDkoQxV22UapAigiQIltCMFzHclXLnD82n/6haUFmFwiaMIej67DoQnOEND9Uv1chfhDrOHElfGkCZdn+GN9pKLND2i5a+bCDDtJ3NiBYNvbS2dih378LBf2rcrdlb0L3A+wX6VNibjQv6k3i89dgchj30IkEumdcexI+wlTKHgEtJiN9YQMT5k19AxMGA+6F6SeUjpgWEG1AuVOQHSjJ2fSJiv9ch3jTJz+rs3Jf/rdWL0znpm6ShGCPjsIy+WFEM6jZEOhAKOcmQA40oYr5TfMMU4mrCLJgTn98p/Qeu44tgVp2HSqJJZFcgu2SNl4pBTUiU1UidNwsk9eSavZGw9WC/WxHqbSXPW58wO+VHW+wfMVrIh</latexit><latexit sha1_base64="bI9/eSynG3fY3oXkpkrQ9o+YjL8=">AAACOXicbVDLSgMxFM3UR2t9VV26CYpQQcqMILosuOnCRQu2FtpSMukdDc08SO6IZZjfcuNfuBPcuLAUt/6A6VSxPi4ETs49Nzn3uJEUGm37ycotLC4t5wsrxdW19Y3N0tZ2S4ex4tDkoQxV22UapAigiQIltCMFzHclXLnD82n/6haUFmFwiaMIej67DoQnOEND9Uv1chfhDrOHElfGkCZdn+GN9pKLND2i5a+bCDDtJ3NiBYNvbS2dih378LBf2rcrdlb0L3A+wX6VNibjQv6k3i89dgchj30IkEumdcexI+wlTKHgEtJiN9YQMT5k19AxMGA+6F6SeUjpgWEG1AuVOQHSjJ2fSJiv9ch3jTJz+rs3Jf/rdWL0znpm6ShGCPjsIy+WFEM6jZEOhAKOcmQA40oYr5TfMMU4mrCLJgTn98p/Qeu44tgVp2HSqJJZFcgu2SNl4pBTUiU1UidNwsk9eSavZGw9WC/WxHqbSXPW58wO+VHW+wfMVrIh</latexit><latexit sha1_base64="YqCUC7yxgx0sm/WiDrXrTBakLpo=">AAACOXicbVDLSgMxFM34rPVVdekmWIQWpMy40WXBTRcuKthW6Awlk96pwcyD5I5YhvktN/6FO8GNC0Xc+gOm04rPC4GTc89Nzj1+IoVG236w5uYXFpeWSyvl1bX1jc3K1nZXx6ni0OGxjNWFzzRIEUEHBUq4SBSw0JfQ869OJv3eNSgt4ugcxwl4IRtFIhCcoaEGlXbNRbjB4qHMlynkmRsyvNRBdprnB7T2eRMR5oPsm1jB8Evbyidix67XB5Wq3bCLon+BMwNVMqv2oHLvDmOehhAhl0zrvmMn6GVMoeAS8rKbakgYv2Ij6BsYsRC0lxUecrpvmCENYmVOhLRgv09kLNR6HPpGWTj93ZuQ//X6KQbHnlk6SREiPv0oSCXFmE5ipEOhgKMcG8C4EsYr5ZdMMY4m7LIJwfm98l/QPWw4dsM5s6vN5iyOEtkle6RGHHJEmqRF2qRDOLklj+SZvFh31pP1ar1NpXPWbGaH/Cjr/QMT7K9e</latexit>

0
<latexit sha1_base64="Csx7NGrBjkW+teDzLw/4EeqIwTo=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYRCswp6NdgZsLBMwH5AcYW8zl6zZ2zt294R45BfYWChi62/xF9hZ+k/cS1Jo4oOBx3szzMwLEsG1IeTLWVldW9/YLGwVt3d29/ZLB4dNHaeKYYPFIlbtgGoUXGLDcCOwnSikUSCwFYyuc791j0rzWN6acYJ+RAeSh5xRY6U66ZXKpEKmcJeJNyflq4+H7yoA1Hqlz24/ZmmE0jBBte54JDF+RpXhTOCk2E01JpSN6AA7lkoaofaz6aET99QqfTeMlS1p3Kn6eyKjkdbjKLCdETVDvejl4n9eJzXhpZ9xmaQGJZstClPhmtjNv3b7XCEzYmwJZYrbW102pIoyY7Mp2hC8xZeXSfO84pGKVyflah5FjgIcwwmcgQcXUIUbqEEDGCA8wjO8OHfOk/PqvM1aV5z5zBH8gfP+AwDoj0w=</latexit><latexit sha1_base64="vUZZxIDjZAGyzbQpuFaYYpjf5bg=">AAAB6HicbZC5TgMxEIZnwxXCFY6OxiJCooq8NNARiQLKRCKHlESR15lNTLyHbC9SWOUJaChAiJYH4Cl4AjpK3gTnKCDhlyx9+v8ZeWa8WAptKP1yMkvLK6tr2fXcxubW9k5+d6+mo0RxrPJIRqrhMY1ShFg1wkhsxApZ4Emse4PLcV6/Q6VFFN6YYYztgPVC4QvOjLUqtJMv0CKdiCyCO4PCxcf999X7QVru5D9b3YgnAYaGS6Z106WxaadMGcEljnKtRGPM+ID1sGkxZAHqdjoZdESOrdMlfqTsCw2ZuL87UhZoPQw8Wxkw09fz2dj8L2smxj9vpyKME4Mhn37kJ5KYiIy3Jl2hkBs5tMC4EnZWwvtMMW7sbXL2CO78yotQOy26tOhWaKFUgqmycAhHcAIunEEJrqEMVeCA8ABP8OzcOo/Oi/M6Lc04s559+CPn7QeyEJCQ</latexit><latexit sha1_base64="vUZZxIDjZAGyzbQpuFaYYpjf5bg=">AAAB6HicbZC5TgMxEIZnwxXCFY6OxiJCooq8NNARiQLKRCKHlESR15lNTLyHbC9SWOUJaChAiJYH4Cl4AjpK3gTnKCDhlyx9+v8ZeWa8WAptKP1yMkvLK6tr2fXcxubW9k5+d6+mo0RxrPJIRqrhMY1ShFg1wkhsxApZ4Emse4PLcV6/Q6VFFN6YYYztgPVC4QvOjLUqtJMv0CKdiCyCO4PCxcf999X7QVru5D9b3YgnAYaGS6Z106WxaadMGcEljnKtRGPM+ID1sGkxZAHqdjoZdESOrdMlfqTsCw2ZuL87UhZoPQw8Wxkw09fz2dj8L2smxj9vpyKME4Mhn37kJ5KYiIy3Jl2hkBs5tMC4EnZWwvtMMW7sbXL2CO78yotQOy26tOhWaKFUgqmycAhHcAIunEEJrqEMVeCA8ABP8OzcOo/Oi/M6Lc04s559+CPn7QeyEJCQ</latexit><latexit sha1_base64="EorE6s8qhIzHxD/qN8rIuw/i3H0=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYhCswp6NlgEbywTMByRH2NvMJWv29o7dPSEc+QU2ForY+pPs/Ddukis08cHA470ZZuaFqRTGUvrtbWxube/slvbK+weHR8eVk9O2STLNscUTmehuyAxKobBlhZXYTTWyOJTYCSd3c7/zhNqIRD3YaYpBzEZKRIIz66QmHVSqtEYXIOvEL0gVCjQGla/+MOFZjMpyyYzp+TS1Qc60FVzirNzPDKaMT9gIe44qFqMJ8sWhM3LplCGJEu1KWbJQf0/kLDZmGoeuM2Z2bFa9ufif18tsdBvkQqWZRcWXi6JMEpuQ+ddkKDRyK6eOMK6Fu5XwMdOMW5dN2YXgr768TtrXNZ/W/Cat1utFHCU4hwu4Ah9uoA730IAWcEB4hld48x69F+/d+1i2bnjFzBn8gff5A3c/jK4=</latexit>

h, . . . , h
<latexit sha1_base64="+y6/ciDQWshUs9lJFNeFzhRgPJY=">AAAB8nicbVBNSwMxFMzWr1q/qh69BIvgoZTdKuix6MVjBVsL26Vk02w3NJssyVuhLP0ZXjwo4tVf481/Y9ruQVsHAsPMG/LehKngBlz32ymtrW9sbpW3Kzu7e/sH1cOjrlGZpqxDlVC6FxLDBJesAxwE66WakSQU7DEc3878xyemDVfyASYpCxIykjzilICV/LiO+0MFpo7jQbXmNtw58CrxClJDBdqD6peN0ixhEqggxviem0KQEw2cCjat9DPDUkLHZMR8SyVJmAny+cpTfGaVIY6Utk8Cnqu/EzlJjJkkoZ1MCMRm2ZuJ/3l+BtF1kHOZZsAkXXwUZQKDwrP78ZBrRkFMLCFUc7srpjHRhIJtqWJL8JZPXiXdZsO7aDTvL2utm6KOMjpBp+gceegKtdAdaqMOokihZ/SK3hxwXpx352MxWnKKzDH6A+fzB/9/kGo=</latexit>

a⌫+1
<latexit sha1_base64="UrsKwjzDhHlpIA7sUsPolHh+8sk=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMePEYwTwkWcLsZDYZMo9lZlYIS77CiwdFvPo53vwbJ8keNLGgoajqprsrSjgz1ve/vcLa+sbmVnG7tLO7t39QPjxqGZVqQptEcaU7ETaUM0mblllOO4mmWESctqPx7cxvP1FtmJIPdpLQUOChZDEj2DrpEfeznkwvgmm/XPGr/hxolQQ5qUCORr/81RsokgoqLeHYmG7gJzbMsLaMcDot9VJDE0zGeEi7jkosqAmz+cFTdOaUAYqVdiUtmqu/JzIsjJmIyHUKbEdm2ZuJ/3nd1MY3YcZkkloqyWJRnHJkFZp9jwZMU2L5xBFMNHO3IjLCGhPrMiq5EILll1dJq1YNLqu1+6tKvZ7HUYQTOIVzCOAa6nAHDWgCAQHP8ApvnvZevHfvY9Fa8PKZY/gD7/MHcHiQKQ==</latexit>

a⌫<latexit sha1_base64="riWMBMycCrxp9Q5uszTFVh4iJRQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48VTFtoQ5lsN+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMUebTRCSqG6JmgkvmG24E66aKYRwK1gknd3O/88SU5ol8NNOUBTGOJI84RWMlHwd9mQ2qNbfuLkDWiVeQGhRoDapf/WFCs5hJQwVq3fPc1AQ5KsOpYLNKP9MsRTrBEetZKjFmOsgXx87IhVWGJEqULWnIQv09kWOs9TQObWeMZqxXvbn4n9fLTHQb5FymmWGSLhdFmSAmIfPPyZArRo2YWoJUcXsroWNUSI3Np2JD8FZfXiftRt27qjcermvNZhFHGc7gHC7Bgxtowj20wAcKHJ7hFd4c6bw4787HsrXkFDOn8AfO5w/PGY6t</latexit>

Old base pointer

p
<latexit sha1_base64="FfO2sDRx+rCMSbZob7gi3NwTiSk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jpp16reVbXWvK7U63kcRTiDc7gED26gDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB2s2M9g==</latexit>

q
<latexit sha1_base64="DoEOrRSEvp5zq0DDuoDs/pQU56I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2FZoQ9lsJ+3azSbuboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqPqAaBZfYMtwIvE8U0igQ2AnGNzO/84RK81jemUmCfkSHkoecUWOl5mO/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+Sdq3qXVRrzctKvZ7HUYQTOIVz8OAK6nALDWgBA4RneIU358F5cd6dj0VrwclnjuEPnM8f3FGM9w==</latexit>

Heap

Fig. 18: Top: a program that attempts to read the secret h
through the pointer p when the RTE decides to reuse the
recently freed memory for the allocation on line 4. Bottom:
stack- and heap layout after executing line 5 of the program.

S-ALLOC
a = argmin

a∈A s.t. a,...,a+n+2∈A�`2
([a, . . . , a+ n+ 2] ∩ dom(h) = ∅)

c = x := alloc(e1, e2, s, k1, k2) 〈e1,m, p〉 ⇓ n
P = p · P ′ 〈e2,m, p〉 ⇓ v 〈s, p〉 ⇓type τ

〈ki, p〉 ⇓lab `i m′ = m[δ(x) + fp(m) 7→ (a+ 3)ν]

h′ =
h[a 7→ 0, a+ 1 7→ ν, a+ 2 7→ (`1, (τ, n))]
∪{a+ i+ 3 7→ v | i ∈ 0, . . . , n− 1}

〈c,m ·M,P, h, q〉ν → 〈stop,m′ ·M,P, h′, q + 1〉ν+1

T-ALLOC
Γ,Π, φ ` e1 : intk1 Γ,Π, φ ` e2 : s
Π;φ `lab k1 : k2 Π, φ `type s : k2

Π;φ `lab k2 : ⊥ φ ` (k2 7→ s)k1tpc <: Γ(x)

Γ,Π, φ, pc, fr ` x := alloc(e1, e2, s, k1, k2)

Fig. 19: Static and dynamic semantics for allocation. The
remaining judgments are defined in the technical report [23].

consider the program in Figure 18. On line 2 a pointer to an
allocation containing public data is stored in p with a version
number ν. On line 3 the memory is freed, making it possible
for S-ALLOC to reuse the memory from the allocation on
line 2. The memory is reused on line 5, causing p to point to
secret data, even though the type of p specifies that it points
to public data. However, an updated version number ν + 1 is
stored when the memory is being reused, so any attempt to
access the secret data through p will fail the version check.

Figure 19 also defines the typing judgment: first, the
expression e1, which denotes the size of the allocation, must
be of integer type with label at most k1. This ensures that the
label argument k1 correctly captures the security of the size of
the allocation at runtime. Similarly, the expression e2, which
denote the initial value of the array entries, must be typeable at
type s, ensuring that the type argument s correctly captures the
type information of the array at runtime. Finally, the partition
label k2 must be typeable at the label ⊥. This guarantees that
no information can be learned by knowing which partition the
allocation happens in.

The events for MS is defined in the technical report, as
well as the rest of the instantiation language. We conclude this
section with the following lemma showing that MS satisfies

11

all the requirements stated in Section IV-B.

Lemma 1. The instantiation language MS is well-formed.

We now describe how MS can be used to implement a
secure mark-and-sweep garbage collector. This case study is
developed in a setting of the two-point lattice L v H from
Section II-A.

2) Using the instantiation language: Figure 20 presents
two functions representing the beginning of the marking phase.
Function mark_frames is invoked by the gc function, which
is invoked by the runtime.

1 gc 〈pc : L,fr : L〉() pc,fr
=

2 let (αargs, e) := unpack FP in
3 let (αlocals, p) := unpack e in
4 let (α2

args, e2) := unpack
5 *(p - sizeof Tst(pc,fr,L)) in
6 let (α2

locals, p2) := unpack e2 in
7 mark_frames〈pc,fr〉〈α2

args,α
2
locals〉(p2); ...

Function gc starts by reading the frame pointer FP, on
line 2, to obtain an existentially quantified pointer e of
type (∃αlocals : typefr . (αarg · Tst(pc, fr ,L) @ αlocals)pc)L.
On line 3 e is unpacked, revealing the pointer p of type
(αarg · Tst(pc, fr ,L) @ αlocals)pc , pointing to the beginning of
gc’s stack frame. Lines 4 to 6 then follow the same procedure
to obtain a pointer p2 to the beginning of the previous stack
frame (i.e., the function that was executing before the GC
occurred). This pointer is then passed to a recursive function
mark_frames on line 7, which traverses each stack frame.
This function is shown in Figure 20. On line 3 the function
checks if the pointer p is non-zero (i.e., we are not at the last
stack frame). It marks allocations reachable from the stack
frame starting at p using the function mark_frame on line 4,
and computes the pointer to the previous stack frame on lines 5
to 7. On line 8 the function then invokes itself recursively to
mark the previous frame starting at p2.

Function mark_frame is also recursively defined, as it
traverses each entry in a single stack frame. On line 3 the
function performs runtime type analysis on the type αlocals.
If the runtime representation of the type is a product type
with a pointer type (κp 7→ α)κ at its head, lines 5 to 10 are
executed. Line 5 performs a dynamic “flows to” check12 to
ensure that it is secure to reclaim this allocation [24]. If so,
the pointer is read off the stack on line 6, and line 7 marks
the pointer if it is non-null. For simplicity we elide the code
that marks objects recursively reachable from this object, but
the full implementation is available in our technical appendix,
and the code is executable using our prototype implementation
of Zee.

After having marked all allocations reachable from q on
line 7, mark_frame calculates the offset n to the address of
the next entry in the stack frame on line 9, and then invokes
itself recursively on line 10 with the new address p+ n as its
argument.

12The expression κ1 ≡ κ2 is shorthand for κ1 v κ2 ∧ κ2 v κ1.

1 mark_frames 〈pc : L,fr : L〉〈αargs : L,αlocals : L〉
2 (p : (αargs * Tst(pc,fr,L) @ αlocals)pc) =fr

pc

3 if p then
4 mark_frame〈pc,fr〉〈αargs,αlocals〉(p);
5 let (α2

args, e) := unpack
6 *(p - sizeof Tst(pc,fr,L)) in
7 let (α2

locals, p2) := unpack e in
8 mark_frames〈pc,fr〉〈α2

args,α
2
locals〉(p2)

9 else skip

1 mark_frame〈pc : L,fr : L〉〈αargs : L,αlocals : L〉
2 (p : (αargs * Tst(pc,fr,L) @ αlocals)pc) =fr

pc

3 match αlocals with
4 (κp 7→ α)κ * β ⇒
5 if κp ≡ pc then
6 let q := *p in
7 if q then mark(q); ... else skip
8 else skip;
9 let n := sizeof (κp 7→ α)κ in

10 mark_frame〈pc,fr〉〈αargs,β〉(p + n)
11 | α * β ⇒
12 let n := sizeof α in
13 mark_frame〈pc,fr〉〈αargs,β〉(p + n)
14 | _ ⇒ skip

Fig. 20: Snippets from the GC case study: The stack frames
are traversed (top) and each frame is traversed looking for
pointers into the heap (bottom).

If αlocals is not of the form (κp 7→ α)κ · β, but is still a
product type α · β, lines 12 and 13 are executed. Line 12
computes the number of addresses that must be skipped in
order to skip past the current entry in the stack frame, and
line 13 then calls the function recursively with the next address
p + n to inspect. Finally, if αlocal is not a product type, the
frame has been completely traversed and line 14 is executed,
and the function returns.

B. Secure thread scheduling

Once we have the possibility of allocating memory on the
heap, we can use the same instantiation language MS to
implement a thread scheduler. Concurrency has received a
lot of attention in the literature on language-based security
[15], [28], [29], [31], [32], [40], especially in the context
of timing-channels. Several authors [15], [28], [32] propose
special-purpose thread schedulers designed to close such timing-
channels, and in this section we present an implementation
of a secure cooperative thread scheduling algorithm. For the
purpose of this case study, each function written by the user
is assumed to have been rewritten into continuation passing
style (CPS), as is standard for many compilers for functional
programming languages [3], [14], and defunctionalized into a
form that contains no higher-order functions, i.e., closure is an
identifier followed by a heterogeneous array of local variables.
Each security level from some fixed lattice is associated with
a queue of closures, and a thread schedules a function f to be
invoked by enqueuing its closure in the queue associated with
the program counter label of f . The scheduler is a function
schedule that receives a queue for each security level, and

12

a bound for how long to run sensitive computation. We have
implemented a small security-typed queue datastructure in
Zee that supports operations such as checking if the queue is
empty, as well as queueing and dequeuing elements. We use
a pseudocode-style description of the scheduling algorithm,
and refer interested readers to the implementation for a precise
description.

1 schedule(n : intL,
2 schedL : (L 7→ (∃ α : typeL . α)L)L,
3 schedH : (L 7→ (∃ α : typeL . α)H)H) =H

L

4 while nonempty(schedL) do
5 let (α, proc) := unpack dequeue(&schedL)
6 in run〈L〉〈α〉(proc);
7 at H with bound n do
8 if nonempty(schedH) then
9 let (α, proc) :=

10 unpack dequeue(&schedH)
11 in run〈H〉〈α〉(proc);
12 else skip

For simplicity, the initial program counter label is L, meaning
that threads with program counter L do not need a bound on
their computation time, but the scheduler can only be called
when the program counter label is L. The frame label, on the
other hand, is set to H allowing any sensitive information to
flow to the types of the data, but any attempts to compute
information based on types will be assigned the label H.

The thread scheduler executes a public quanta (i.e., the
execution of one closure in the schedL queue), followed by
one secret quanta (i.e., the execution of one closure in the
schedH). There are positives and negative things to point out
about the design of this scheduler: on the positive side, the
bound on secret computations n only needs to bound one
quanta, and the function that calls schedule does not need to
consider the number of closures in schedH. On the negative
side, to guarantee timing-sensitive noninterference, each public
quanta must be followed by n steps of computation, no matter
if there is any secret threads to execute or not. Furthermore, in
order to run secret threads, there must also be public threads
available, as the while loop terminates when the schedL queue
is empty. An alternative strategy would be a scheduler that
provides a bound on the total computation time on high threads.
With this approach secret threads can run without the presence
of public threads. Having developed this prototype, we leave
the design of a more practical thread scheduler as future work.

VI. IMPLEMENTATION

We have implemented a type checker and interpreter for Zee
in Haskell in about 3600 lines of code, and the case studies
consists of about 500 lines each. Providing an instantiation
language corresponds to an implementation of a particular type
class, and the type checking and evaluation of instantiation
language constructs is delegated to the relations provided by
the instantiation language, similar to how the judgments in
the paper are defined. The implementation can be found at:
https://www.dropbox.com/s/bl2jusn8nqukqhu/zee.zip.

VII. RELATED WORK

Our work on securing runtime environments combines
previous efforts of memory safety for unsafe programming
languages, extensible reasoning about type systems and
information-flow control. We review the relevant literature
in each of these classes separately.

A. Stack typing and memory safety

The work on typed assembly languages initiated by Morrisett
et al. [20] paved the way for type systems for low-level
programming languages. As the target language was expressed
in continuation-passing style, there was no need for a stack.
Morrisett et al. [19] introduced local stack variables, but as the
goal of that work is type preserving compilation it does not
support reasoning about stack traversal, and so the “previous
frame pointer” is not available on the stack for accessing the
previous stack frames. For this reason Morrisett et al. do not
consider runtime type analysis.

Our stack typing discipline is inspired by the bunched
adjacency logic of Ahmed and Walker [2]. They use logic
formulae more← and more→ to describe the type of an infinite
sequence of locations that increases “to the left” and “to the
right” respectively, similar to our use of stack pointer types.

Our version-based enforcement mechanism is inspired by
CETS’s [22] identifier-based temporal checking. CETS is a
program transformation that adds temporal memory safety
checking capable of detecting dangling pointer dereferences and
double frees errors at runtime. Our version-based enforcement
mechanism could be replaced with static reasoning about
regions. Regions were introduced by Tofte and Talpin [35] and
later used to provide memory safety for a safe dialect of C
[10]. We believe the use of regions is orthogonal to our choice
of a dynamic enforcement mechanism.

B. Attacks on runtimes

The work on observational determinism by Zdancewic and
Myers [40] contains a detailed collection of common scheduler-
related attacks. Other parts of the RTE that has been attacked
include garbage collectors [24]. Pedersen and Askarov [24]
present a series of attacks on the garbage collectors of the
Java virtual machine and the V8 JavaScript engine, and design
a type system and a small-step semantics for a high-level
language with automatic memory management for which they
prove a noninterference result similar to ours. Finally, Vassena
et al. [37] present attacks that combine concurrent execution
and lazy evaluation for leaking sensitive information. They
propose a new construct for Haskell called lazydup, which
lazily duplicates thunks on the heap when entering secret
contexts (i.e., when the program counter label is H, as they
only consider a two-point lattice).

C. Securing runtimes

Vassena et al. [38] present a new foundation for a dynamic
information flow control parallel runtime system. The goal of
their work is securing the execution platform of LIO [33], a
dynamic information flow control library for Haskell. Similar

13

https://www.dropbox.com/s/bl2jusn8nqukqhu/zee.zip

to our work, Vassena et al. [38] consider a setting in which
an attacker can obtain the current global time as a natural
number counting execution steps, and (unlike our model) the
current size of the heap. They design a system for hierarchically
managing space and time resources with some amount of
burden on the programmer: a parent thread has to manually
kill their child thread to reclaim resources. Their end goal is
an implementation of a modified GHC runtime system, but
such a modified runtime has yet to be implemented.

The work by Sabelfeld and Sands [28] contains an interesting
observation:

Abstractly we will take a scheduler to be a mechanism for
selecting threads which itself satisfies some noninterference
property, i.e., its behaviour is independent of high data.

This is exactly the approach we have taken: a thread scheduler
is a program written in our language, and Theorem 1 proves
that, since this program is well-typed, its public observable
behavior is independent of high data.

D. Static information flow control

There is a large body of literature focusing on static
information flow control, starting with the seminal work by
Denning and Denning [6] and later formulated as a type
system by Volpano et al. [39]. Sabelfeld and Myers [27]
survey the different enforcement techniques and security
definitions. Zheng and Myers [44] introduce the technique
of including a formulae expressing which flows are guaranteed
to hold at specific program points, allowing for static reasoning
about information flow policies that vary at runtime. The use
of existentially quantified labels is introduced by Tse and
Zdancewic [36], and we follow the same typing discipline for
such values. Dependent type systems for IFC has also been
explored by Lourenço and Caires [16], Zhang et al. [43] and
Gregersen et al. [9].

E. Verified runtimes

There has been much work on verifying runtime system
components such as garbage collectors [5], [7], [18] and thread
schedulers [11] using program logics. We view our work
complementary to these efforts. The constructs needed for
implementing secure runtime environments, that we identify in
this work, may serve as guidelines when applying enforcement
techniques different from our type system. Additionally, a
program logic may be used to verify the requirements of the
instantiation languages used in Zee.

REFERENCES

[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin, Dynamic Typing in a
Statically-typed Language, in Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ACM,
1989,

[2] A. Ahmed and D. Walker, The Logical Approach to Stack Typing, in
Proceedings of the 2003 ACM SIGPLAN International Workshop on
Types in Languages Design and Implementation, ACM, 2003,

[3] A. W. Appel, Compiling with continuations. Cambridge University
Press, 2006.

[4] A. Askarov, D. Zhang, and A. C. Myers, Predictive Black-box
Mitigation of Timing Channels, in Proceedings of the 17th ACM
Conference on Computer and Communications Security, ACM, 2010,

[5] L. Birkedal, N. Torp-Smith, and J. C. Reynolds, Local Reasoning
About a Copying Garbage Collector, in Proceedings of the 31st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ACM, 2004,

[6] D. E. Denning and P. J. Denning, Certification of Programs for Secure
Information Flow, Commun. ACM, Jul. 1977.

[7] P. Gammie, A. L. Hosking, and K. Engelhardt, Relaxing Safely:
Verified On-the-fly Garbage Collection for x86-TSO, in Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ACM, 2015,

[8] J. A. Goguen and J. Meseguer, Security Policies and Security Models,
in 1982 IEEE Symposium on Security and Privacy, IEEE, Apr. 1982.

[9] S. Gregersen, S. E. Thomsen, and A. Askarov, A Dependently Typed
Library for Static Information-Flow Control in Idris, CoRR, 2019.
arXiv: 1902.06590.

[10] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney,
Region-Based Memory Management in Cyclone, ACM SIGPLAN
Notices, May 2002.

[11] Y. Guo, X. Feng, Z. Shao, and P. Shi, Modular Verification of
Concurrent Thread Management, in Programming Languages and
Systems, R. Jhala and A. Igarashi, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012,

[12] R. Harper and G. Morrisett, Compiling Polymorphism Using Inten-
sional Type Analysis, in Proceedings of the 22Nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ACM,
1995,

[13] R. Jones, A. Hosking, and E. Moss, The Garbage Collection Handbook:
The Art of Automatic Memory Management, 1st. Chapman &
Hall/CRC, 2011.

[14] S. L. P. Jones, Implementing lazy functional languages on stock
hardware: the Spineless Tagless G-machine, Journal of Functional
Programming, Apr. 1992.

[15] A. Karbyshev, K. Svendsen, A. Askarov, and L. Birkedal, Compo-
sitional Non-interference for Concurrent Programs via Separation
and Framing, in Principles of Security and Trust, Cham: Springer
International Publishing, 2018,

[16] L. Lourenço and L. Caires, Dependent Information Flow Types, in
Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ACM, 2015,

[17] H. Mantel and A. Sabelfeld, A Generic Approach to the Security of
Multi-Threaded Programs, in Proceedings of the 14th IEEE Workshop
on Computer Security Foundations, IEEE Computer Society, 2001,

[18] A. McCreight, Z. Shao, C. Lin, and L. Li, A General Framework for
Certifying Garbage Collectors and Their Mutators, in Proceedings
of the 28th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ACM, 2007,

[19] G. Morrisett, K. Crary, N. Glew, and D. Walker, Stack-based Typed
Assembly Language, in Types in Compilation, X. Leroy and A. Ohori,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1998,

[20] J. G. Morrisett, D. Walker, K. Crary, and N. Glew, From System F
to Typed Assembly Language, in POPL, 1998.

[21] A. C. Myers and A. C. Myers, JFlow: Practical Mostly-static
Information Flow Control, in Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ACM,
1999,

14

http://arxiv.org/abs/1902.06590

[22] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, CETS:
Compiler enforced temporal safety for C, in Proceedings of the 2010
International Symposium on Memory Management, ACM, 2010,

[23] Pedersen, Mathias V., Askarov, Aslan, “Static enforcement of secure
runtime systems: technical report,” Tech. Rep., 2018.

[24] M. V. Pedersen and A. Askarov, From Trash to Treasure: Timing-
Sensitive Garbage Collection, in 2017 IEEE Symposium on Security
and Privacy (SP), IEEE, May 2017.

[25] F. Perry, C. Hawblitzel, and J. Chen, Simple and Flexible Stack Types,
Jul. 2007,

[26] B. C. Pierce, Types and Programming Languages, 1st. The MIT Press,
2002.

[27] A. Sabelfeld and A. C. Myers, Language-based Information-flow
Security, IEEE J.Sel. A. Commun., Sep. 2006.

[28] A. Sabelfeld and D. Sands, Probabilistic noninterference for multi-
threaded programs, in Proceedings 13th IEEE Computer Security
Foundations Workshop. CSFW-13, IEEE Comput. Soc.

[29] A. Sabelfeld, The Impact of Synchronisation on Secure Information
Flow in Concurrent Programs, in Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2001,

[30] L. Skorstengaard, D. Devriese, and L. Birkedal, Reasoning About a
Machine with Local Capabilities, in Programming Languages and
Systems, A. Ahmed, Ed., Cham: Springer International Publishing,
2018,

[31] G. Smith and D. Volpano, Secure Information Flow in a Multi-threaded
Imperative Language, in Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ACM,
1998,

[32] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and D. Maziéres,
Addressing Covert Termination and Timing Channels in Concurrent
Information Flow Systems, in Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming, ACM, 2012,

[33] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières, Flexible Dynamic
Information Flow Control in Haskell, in Proceedings of the 4th ACM
Symposium on Haskell, ACM, 2011,

[34] C. A. Stone and R. Harper, Extensional Equivalence and Singleton
Types, ACM Trans. Comput. Logic, Oct. 2006.

[35] M. Tofte and J.-P. Talpin, Region-Based Memory Management, Inf.
Comput., Feb. 1997.

[36] S. Tse and S. Zdancewic, Run-time Principals in Information-flow
Type Systems, ACM Trans. Program. Lang. Syst., Nov. 2007.

[37] M. Vassena, J. Breitner, and A. Russo, Securing Concurrent Lazy
Programs Against Information Leakage, in 2017 IEEE 30th Computer
Security Foundations Symposium (CSF), IEEE, Aug. 2017.

[38] M. Vassena, G. Soeller, P. Amidon, M. Chan, and D. Stefan, Towards
parallel information flow control foundations, in Principles of Security
and Trust, 2019.

[39] D. Volpano, C. Irvine, and G. Smith, A Sound Type System for Secure
Flow Analysis, J. Comput. Secur., Jan. 1996.

[40] S. Zdancewic and A. Myers, Observational determinism for concurrent
program security, in 16th IEEE Computer Security Foundations
Workshop, 2003. Proceedings., IEEE Comput. Soc.

[41] D. Zhang, A. Askarov, and A. C. Myers, Language-based Control
and Mitigation of Timing Channels, in Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ACM, 2012,

int` - intκ

τ - p

(`1 7→ τ)`2 - (κ1 7→ p)κ2

τi - pi i = 1, 2

(τ1 @ τ2)` - (p1 @ p2)κ τ - α

|τ | = n |p| = m m ≤ n
∀i ∈ {1, . . . ,m− 1} . τi - pi τm...n - pm

τ - p

(a) Pattern Matching relation.

JintκK(p, int`) = p[κ 7→ `]

Jp1K(p, τ1) = p′ Jp2K(p′, τ2) = p′′

J(p1 @ p2)κK(p, (τ1 @ τ2)`) = P ′′[κ 7→ `]

JpK(p, τ) = p′

p′′ = p′[κ1 7→ `1, κ2 7→ `2]

J(κ1 7→ p)κ2
K(p, `1 7→ τ`2) = p′′

JαK(p, τ) = p[α 7→ τ]

|τ | = n |p| = m m ≤ n p0 = p
∀i ∈ {1, . . . ,m− 1} . JpiK(pi−1, τi) = pi

JpmK(pm−1, τm...n) = p′

JpK(p, τ) = p′

(b) Binding free variables in the pattern p by deconstructing the type
value τ .

Π ` intκ k Π[κ 7→ levelk] : intκ

Π ` α k Π[α 7→ typek] : α

Π ` p1 k Π1 : s1 Π1 ` p2 k Π2 : s2

Π ` (p1 @ p2)κ k Π2[κ 7→ levelk] : (s1 @ s2)κ

Π ` p k Π′ : s

Π ` (κ1 7→ p)κ2
 k Π′[κ1 7→ levelk, κ2 7→ levelk] : (κ1 7→ s)κ2

Π0 = Π Πi−1 ` pi k Πi : si i = 1, . . . , n

Π ` p1, . . . , pn k Πn : s1, . . . , sn

(c) Relation for closing the free type variables in the pattern p, and
computing the type of the scrutinee when it matches pattern p.

[42] ——, Predictive Mitigation of Timing Channels in Interactive Systems,
in Proceedings of the 18th ACM Conference on Computer and
Communications Security, ACM, 2011,

[43] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, A Hardware
Design Language for Timing-Sensitive Information-Flow Security, in
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ACM,
2015,

[44] L. Zheng and A. C. Myers, Dynamic Security Labels and Static
Information Flow Control, Int. J. Inf. Secur., Mar. 2007.

APPENDIX

15

S-IF-T
〈e,M,P 〉 ⇓ n n 6= 0

〈if e c1 c2,M, P, q〉ν
→ 〈c1,M, P, q + 1〉ν

S-IF-F
〈e,M,P 〉 ⇓ 0

〈if e c1 c2,M, P, q〉ν
→ 〈c2,M, P, q + 1〉ν

S-WHILE-F
〈e,M,P 〉 ⇓ 0

〈while e c,M,P, q〉ν
→ 〈stop,M, P, q + 1〉ν

S-WHILE-T
〈e,M,P 〉 ⇓ n n 6= 0

〈while e c,M,P, q〉ν →
〈c; while e c,M,P, q + 1〉ν

S-SKIP

〈skip,M, P, q〉ν → 〈stop,M, P, q + 1〉ν

S-ASGN
〈e,m ·M,P 〉 ⇓ v m′ = m[δ(x) + fp(m) 7→ v]

〈x := e,m ·M,P, q〉ν → 〈stop,m′ ·M,P, q + 1〉ν
S-WRITE

mi = (mI, νi) ∈M a ∈ I νi ≤ γ
〈e1,M, P 〉 ⇓ aγ 〈e2,M, P 〉 ⇓ v

〈∗e1 := e2,M, P, q〉ν → 〈stop,M [a 7→ v], P, q + 1〉ν

S-READ
M = m ·M ′ mi = (mI, νi) ∈M a ∈ I νi ≤ γ
〈e,M,P 〉 ⇓ aγ m′ = m[δ(x) + fp(m) 7→M(n)]

〈x := ∗e,m ·M,P, q〉ν → 〈stop,m′ ·M ′, P, q + 1〉ν

S-AT
〈e,m, P 〉 ⇓ n

〈at k e c,m, P, q〉ν →
〈c; delay n,m,P, q + 1〉ν

S-DELAY
n ≤ q

〈delay n,m,P, q〉ν →
〈delay n,m,P, n+ 1〉ν

S-FP
v = (cod(p.arg), (cod(p.local), fp(m)ν))

m = (I, |m|, ν) m′ = m[δ(x) + fp(m) 7→ v]

〈x := fp,m ·M,p · P, q〉ν → 〈stop,m′ ·M,p · P, q + 1〉ν

S-LET
M = m ·M ′ 〈s, p〉 ⇓type τ 〈e,m, p〉 ⇓ v

m′ = m[δ(x) + fp(m) 7→ v] p′ = p[plocal 7→ plocal[x 7→ τ]]

〈let x : s := e in c,M, p · P, q〉ν → 〈c; unscope(x),m′ ·M ′, p′ · P, q + 1〉ν

S-UNSCOPE
p′ = p[local 7→ p.local[x 7→]]

〈unscope(x),M, p · P, q〉ν → 〈stop,M, p′ · P, q + 1〉ν

S-UNPACK-LEV
P = p · P ′ 〈s, p′〉 ⇓type τ 〈e,m, p〉 ⇓ (`1, v2)
p′ = p[pvar 7→ pvar[κ 7→ `1], plocal 7→ plocal[x 7→ τ]]
M = m ·M ′ m′ = m[δ(x) + fp(m) 7→ v2]

〈let (κ : levelk, x : s) := e in c,M, P, q〉ν
→ 〈c; unscope(x),m′ ·M ′, p′ · P ′, q + 1〉ν

S-UNPACK-TY
P = p · P ′ 〈s, p′〉 ⇓type τ 〈e,m, p〉 ⇓ (τ1, v2)
p′ = p[pvar 7→ pvar[α 7→ τ1], plocal 7→ plocal[x 7→ τ]]
M = m ·M ′ m′ = m[δ(x) + fp(m) 7→ v2]

〈let (α : typek, x : s) := e in c,M, P, q〉ν
→ 〈c; unscope(x),m′ ·M ′, p′ · P ′, q + 1〉ν

S-EPILOGUE

〈epilogue, (I1, |m1|, ν1) · (I2, |m2|, ν2) ·M,p · P, q〉ν
→ 〈stop, (I2, |m2|,max(ν1, ν2) + 1) ·M,P, q + 1〉ν

S-MATCH
argmin
i=1,...,n

(τ - pi) = j 〈α, p〉 ⇓type τ JpjK(p, τ) = p′

〈match α (pi ⇒ ci)i=1,...,n,M, p · P, q〉ν → 〈cj ,M, p′ · P, q + 1〉ν
S-CALL
F(f) = 〈κ1, . . . ,κn〉〈α1, . . . ,αm〉(x1 : s′1, . . . , xr : s′r) = c
〈ki, P 〉 ⇓lab `i 〈si, P 〉 ⇓type τi 〈ei,M, P 〉 ⇓ vi
〈s′i, P ′〉 ⇓type τ ′i M = m ·M ′ m′ = (I′, |m′|, ν)
P = (pvar, pargs, plocal) · P ′ p′ = (p′var, p

′
arg, p

′
local)

p′var = {κi 7→ `i | i = 1, . . . , n} ∪ {αi 7→ τi | i = 1, . . . ,m}
p′arg = {xi 7→ τ ′i | i = 1, . . . , r} p′local = {x 7→ ⊥ | x ∈ c}

I′ =
{δ(xi) + sp(m) | i = 1, . . . , r}
∪ {sp(m)} ∪ {δ(z) + sp(m) | z ∈ c}

|m′| = {sp(m) 7→ (cod(parg), (cod(plocal), fp(m)ν))}
∪ {δ(xi) + sp(m) 7→ vi | i = 1, . . . , r}

〈f〈k1, . . . , kn〉〈s1, . . . , sm〉(e1, . . . , er),M, P, q〉ν
→ 〈c; epilogue,m′ ·M,p′ · P, q + 1〉ν+1

S-SEQ-CONT

c′1 6= stop
〈c1,m, P, q〉ν → 〈c′1,m′, P ′, q′〉ν′

〈c1; c2,m, P, q〉ν → 〈c′1; c2,m
′, P ′, q′〉ν′

S-SEQ-STOP

〈c1,m, P, q〉ν → 〈stop,m′, P ′, q′〉ν′

〈c1; c2,m, P, q〉ν → 〈c2,m′, P ′, q′〉ν′

S-INST
〈c,m, P, h, q〉ν → 〈c′,m′, P ′, h′, q′〉ν′

〈c,m, P, h, q〉ν → 〈c′,m′, P ′, h′, q′〉ν′

Fig. 22: Small-step relation for commands.
16

	Introduction
	Programming in Zee
	Computing on heterogeneous values
	Computing on the call-stack
	Fail-stop revocation of expired pointers

	Language
	Syntax
	Commands
	Expressions
	Security labels and types

	Semantics
	Values
	Exposed and private stack frames
	Model of time
	Version counter
	Big-step evaluation for expressions
	Small-step relation for commands

	Type system
	Typing judgment for expressions
	Typing judgment for commands
	Typing judgment for types and labels

	An extensible language

	Security guarantees
	Attacker model
	Events and event semantics
	Attacker observability
	Attacker equivalence

	Specification of an instantiation language
	Security guarantees

	Case studies
	Secure garbage collection
	The instantiation language MS
	Using the instantiation language

	Secure thread scheduling

	Implementation
	Related work
	Stack typing and memory safety
	Attacks on runtimes
	Securing runtimes
	Static information flow control
	Verified runtimes

	Appendix

