
Zeebra: a compiler for a low-level language with IFC

Christoffer Müller Madsen
Department of Computer Science

Aarhus University
christoffer@guava.space

Jon Michael Aanes
Department of Computer Science

Aarhus University
jonjmaa@gmail.com

Aslan Askarov
Department of Computer Science

Aarhus University
aslan@cs.au.dk

Zee [1] is a low-level, imperative, information-flow–aware pro-
gramming language, with runtime type and stack introspection
via existential types and well-typed stack and heap pointers.
The language is intended for writing secure programming
language runtime environments, such as garbage collectors and
schedulers. An important constraint in Zee is that the execution
time of operations on high values in low contexts must be
independent of the values; whether the operation is allocating
on the heap, or just multiplying integers. Any operation that
cannot guarantee this is not allowed in a low context, and must
use a form of predictive mitigation [2].

The original Zee paper provides an interpreter for the
language in Haskell. In this work, we present Zeebra – a
Zee compiler for an LLVM backend. We discuss some of the
design decisions and the challenges we have encountered.

I. CALL-STACK INTROSPECTION

Zee allows for typed call-stack introspection through the
special expression FP that returns the current frame pointer as
an existentially-typed value. The example below uses FP to
indirectly update argument x of function f to 5.

proc f(x : intH) =
let (αargs : typeL, e1 : ) := unroll (FP) in
let (αlocals : typeL, elocals : ) := e1 in
match αargs with
| intH → ∗(elocals + sizeof αlocals) := 5
| → skip

Here, types αlocals and αargs describe the function’s stack
frame. Value elocals points to the stack frame’s locals. We use
pointer arithmetic on elocals to access the arguments of the
current stack frame; it can also be used to access previous
stack frames. Zee’s type system ensures this kind of call-stack
introspection satisfies noninterference. It uses type witnesses
to store information required to pattern match on the types.

Implementation. Zeebra stores type witnesses as tagged 64-
bit pointers, storing the instance size in the upper 15 bits and
the type category (heap, stack pointer, base type, etc.) in the
lower 3 bits; the pointer points to auxiliary information, such
as the pointed-to types for stack pointers. Type witnesses for
variables are maintained by functions.

II. EXISTENTIAL TYPES

Zee allows existentially typed values, even with types like
∃a : type. a where the size of an instance of the type

is unknown. Values of this type can escape from the stack
frame they are allocated in [3]. This poses two challenges.
First, we require the size of stack allocated existential values
to be statically known. This restriction is not apparent in
the Zee interpreter, because it relies on the host language’s
heap allocation. This restriction does not, however, reduce the
expressive power, as the programmer can wrap the value in a
heap allocation, and pass that around.

Second, we must be able to inspect unpacked type witnesses
of existentially typed values outside the scope of their creation.
At that point, storing type witness data on the stack is no
longer an option, as it will be cleared on function return,
resulting in dangling type witnesses. To mitigate this, we
clone type witnesses to the heap when packing an existential
type. We use reference counting to decide when it is safe to
reclaim the type witnesses from the heap. Reference counting
is sufficient because allocations are self-contained.

In cases where the label of the packed type is high, packing
might serve as a timing side channel, as the entire type is
copied. To mitigate this, we require that the label of the packed
type flows to the label of the current PC.

III. SAFE MEMORY REUSE

Zee uses identifier-based temporal checking [4] for safe
memory reuse. There are two version counters: one for stack,
and one for heap. The stack version counter is incremented
with every new frame; the heap one is incremented with
every heap allocation. Stack pointers inherit the version of
the current frame when created. Dereferencing a stack pointer
checks its version against the version of the frame it points
into. Similar checks take place for heap pointers.

Implementation. We use a shadow stack for stack pointer
versioning, and to keep the frames’ version numbers out-of-
band. We found it necessary to increment the stack version
between loop iterations, because escaping pointers can become
ill-typed due to memory reuse across loop iterations.

We also determined that the original Zee approach of
keeping heap pointers in-band to be problematic, because an
attacker can exploit the malloc behaviour to overwrite version
numbers. Instead, we keep allocations and version numbers
separated in different locations on the heap.

IV. LATTICE SIZE

We use a power-set lattice for security levels, encoding
individual levels as bitfields. Because Zee heaps are segregated



based on the security lattice, we restrict the number of set
elements to at most 10, to avoid a combinatorial explosion.

V. EVALUATION

We have ported the timing-secure mark-and-sweep GC from
the original Zee paper to Zeebra to test correct behaviour and
security against timing attacks. For performance benchmark-
ing, we have ported a C implementation [5] of the AES128
block cipher to Zee, where we observe an 8x median slow-
down, over 101 runs of encrypting War and Peace. Compiler
correctness is assured by an additional 650 unit tests.

REFERENCES

[1] M. V. Pedersen and A. Askarov, “Static enforcement of security in runtime
systems,” in 32nd IEEE Computer Security Foundations Symposium, CSF
2019, Hoboken, NJ, USA, June 25-28, 2019. IEEE, 2019, pp. 335–350.

[2] D. Zhang, A. Askarov, and A. C. Myers, “Language-based control
and mitigation of timing channels,” in ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’12,
Beijing, China - June 11 - 16, 2012, J. Vitek, H. Lin, and
F. Tip, Eds. ACM, 2012, pp. 99–110. [Online]. Available:
https://doi.org/10.1145/2254064.2254078

[3] D. Grossman, J. G. Morrisett, T. Jim, M. W. Hicks, Y. Wang,
and J. Cheney, “Region-based memory management in cyclone,” in
Proceedings of the 2002 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Berlin, Germany, June
17-19, 2002, J. Knoop and L. J. Hendren, Eds. ACM, 2002, pp.
282–293. [Online]. Available: https://doi.org/10.1145/512529.512563

[4] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic, “CETS:
compiler enforced temporal safety for C,” in Proceedings of the 9th
International Symposium on Memory Management, ISMM 2010, Toronto,
Ontario, Canada, June 5-6, 2010, J. Vitek and D. Lea, Eds. ACM, 2010,
pp. 31–40. [Online]. Available: https://doi.org/10.1145/1806651.1806657

[5] “Tiny AES in C.” [Online]. Available: https://github.com/kokke/tiny-
AES-c


